Reanalysis of Rate Data for the Reaction CH3 + CH3 → C2H6 Using Revised Cross Sections and a Linearized Second-Order Master Equation
Rate coefficients for the CH3 + CH3 reaction, over the temperature range 300–900 K, have been corrected for errors in the absorption coefficients used in the original publication ( Slagle et al., J. Phys. Chem. 1988, 92, 2455−2462 ). These corrections necessitated the development of a detailed model...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2015-07, Vol.119 (28), p.7668-7682 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7682 |
---|---|
container_issue | 28 |
container_start_page | 7668 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 119 |
creator | Blitz, M. A Green, N. J. B Shannon, R. J Pilling, M. J Seakins, P. W Western, C. M Robertson, S. H |
description | Rate coefficients for the CH3 + CH3 reaction, over the temperature range 300–900 K, have been corrected for errors in the absorption coefficients used in the original publication ( Slagle et al., J. Phys. Chem. 1988, 92, 2455−2462 ). These corrections necessitated the development of a detailed model of the B̃2A1′ (3s)–X̃2A2″ transition in CH3 and its validation against both low temperature and high temperature experimental absorption cross sections. A master equation (ME) model was developed, using a local linearization of the second-order decay, which allows the use of standard matrix diagonalization methods for the determination of the rate coefficients for CH3 + CH3. The ME model utilized inverse Laplace transformation to link the microcanonical rate constants for dissociation of C2H6 to the limiting high pressure rate coefficient for association, k ∞(T); it was used to fit the experimental rate coefficients using the Levenberg–Marquardt algorithm to minimize χ2 calculated from the differences between experimental and calculated rate coefficients. Parameters for both k ∞(T) and for energy transfer ⟨ΔE⟩down(T) were varied and optimized in the fitting procedure. A wide range of experimental data were fitted, covering the temperature range 300–2000 K. A high pressure limit of k ∞(T) = 5.76 × 10–11(T/298 K)−0.34 cm3 molecule–1 s–1 was obtained, which agrees well with the best available theoretical expression. |
doi_str_mv | 10.1021/acs.jpca.5b01002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1697212084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1697212084</sourcerecordid><originalsourceid>FETCH-LOGICAL-a290t-83f7e7bcb59924250d151693b8ed28d417ac6f6b4c878db90bc534786b0231fc3</originalsourceid><addsrcrecordid>eNo1kdtKw0AQhhdRrFbvvZK9FDR1D9kcLiVWK1QK1V6H2UM0JU3a3USoD9AH8BF9ErcHb2aG-T9-hvkRuqJkQAmj96DcYL5UMBCSUELYETqjgpFAMCqO_UySNBART3vo3Lk5IYRyFp6iHhNpysIoPkObqYEaqrUrHW4KPIXW4EdoAReNxe2nwV5XbdnUOBtxfLurv5sfnLFRhGeurD888VU6o3FmG-fwm9nhDkOtMeBxWRuw5bfXvdLUOphYbSx-Bdf6Nlx1sMUv0EkBlTOXh95Hs6fhezYKxpPnl-xhHABLSRskvIhNLJXc3c8E0VTQKOUyMZolOqQxqKiIZKiSONEyJVIJHsZJJAnjtFC8j272vkvbrDrj2nxROmWqCmrTdC73ZjGjjCShR68PaCcXRudLWy7ArvP_33ngbg_4FPJ501n_R-9A8m00-W7po8kP0fA_UON_SA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697212084</pqid></control><display><type>article</type><title>Reanalysis of Rate Data for the Reaction CH3 + CH3 → C2H6 Using Revised Cross Sections and a Linearized Second-Order Master Equation</title><source>ACS Publications</source><creator>Blitz, M. A ; Green, N. J. B ; Shannon, R. J ; Pilling, M. J ; Seakins, P. W ; Western, C. M ; Robertson, S. H</creator><creatorcontrib>Blitz, M. A ; Green, N. J. B ; Shannon, R. J ; Pilling, M. J ; Seakins, P. W ; Western, C. M ; Robertson, S. H</creatorcontrib><description>Rate coefficients for the CH3 + CH3 reaction, over the temperature range 300–900 K, have been corrected for errors in the absorption coefficients used in the original publication ( Slagle et al., J. Phys. Chem. 1988, 92, 2455−2462 ). These corrections necessitated the development of a detailed model of the B̃2A1′ (3s)–X̃2A2″ transition in CH3 and its validation against both low temperature and high temperature experimental absorption cross sections. A master equation (ME) model was developed, using a local linearization of the second-order decay, which allows the use of standard matrix diagonalization methods for the determination of the rate coefficients for CH3 + CH3. The ME model utilized inverse Laplace transformation to link the microcanonical rate constants for dissociation of C2H6 to the limiting high pressure rate coefficient for association, k ∞(T); it was used to fit the experimental rate coefficients using the Levenberg–Marquardt algorithm to minimize χ2 calculated from the differences between experimental and calculated rate coefficients. Parameters for both k ∞(T) and for energy transfer ⟨ΔE⟩down(T) were varied and optimized in the fitting procedure. A wide range of experimental data were fitted, covering the temperature range 300–2000 K. A high pressure limit of k ∞(T) = 5.76 × 10–11(T/298 K)−0.34 cm3 molecule–1 s–1 was obtained, which agrees well with the best available theoretical expression.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.5b01002</identifier><identifier>PMID: 25992467</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2015-07, Vol.119 (28), p.7668-7682</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.5b01002$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.5b01002$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25992467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blitz, M. A</creatorcontrib><creatorcontrib>Green, N. J. B</creatorcontrib><creatorcontrib>Shannon, R. J</creatorcontrib><creatorcontrib>Pilling, M. J</creatorcontrib><creatorcontrib>Seakins, P. W</creatorcontrib><creatorcontrib>Western, C. M</creatorcontrib><creatorcontrib>Robertson, S. H</creatorcontrib><title>Reanalysis of Rate Data for the Reaction CH3 + CH3 → C2H6 Using Revised Cross Sections and a Linearized Second-Order Master Equation</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Rate coefficients for the CH3 + CH3 reaction, over the temperature range 300–900 K, have been corrected for errors in the absorption coefficients used in the original publication ( Slagle et al., J. Phys. Chem. 1988, 92, 2455−2462 ). These corrections necessitated the development of a detailed model of the B̃2A1′ (3s)–X̃2A2″ transition in CH3 and its validation against both low temperature and high temperature experimental absorption cross sections. A master equation (ME) model was developed, using a local linearization of the second-order decay, which allows the use of standard matrix diagonalization methods for the determination of the rate coefficients for CH3 + CH3. The ME model utilized inverse Laplace transformation to link the microcanonical rate constants for dissociation of C2H6 to the limiting high pressure rate coefficient for association, k ∞(T); it was used to fit the experimental rate coefficients using the Levenberg–Marquardt algorithm to minimize χ2 calculated from the differences between experimental and calculated rate coefficients. Parameters for both k ∞(T) and for energy transfer ⟨ΔE⟩down(T) were varied and optimized in the fitting procedure. A wide range of experimental data were fitted, covering the temperature range 300–2000 K. A high pressure limit of k ∞(T) = 5.76 × 10–11(T/298 K)−0.34 cm3 molecule–1 s–1 was obtained, which agrees well with the best available theoretical expression.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1kdtKw0AQhhdRrFbvvZK9FDR1D9kcLiVWK1QK1V6H2UM0JU3a3USoD9AH8BF9ErcHb2aG-T9-hvkRuqJkQAmj96DcYL5UMBCSUELYETqjgpFAMCqO_UySNBART3vo3Lk5IYRyFp6iHhNpysIoPkObqYEaqrUrHW4KPIXW4EdoAReNxe2nwV5XbdnUOBtxfLurv5sfnLFRhGeurD888VU6o3FmG-fwm9nhDkOtMeBxWRuw5bfXvdLUOphYbSx-Bdf6Nlx1sMUv0EkBlTOXh95Hs6fhezYKxpPnl-xhHABLSRskvIhNLJXc3c8E0VTQKOUyMZolOqQxqKiIZKiSONEyJVIJHsZJJAnjtFC8j272vkvbrDrj2nxROmWqCmrTdC73ZjGjjCShR68PaCcXRudLWy7ArvP_33ngbg_4FPJ501n_R-9A8m00-W7po8kP0fA_UON_SA</recordid><startdate>20150716</startdate><enddate>20150716</enddate><creator>Blitz, M. A</creator><creator>Green, N. J. B</creator><creator>Shannon, R. J</creator><creator>Pilling, M. J</creator><creator>Seakins, P. W</creator><creator>Western, C. M</creator><creator>Robertson, S. H</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20150716</creationdate><title>Reanalysis of Rate Data for the Reaction CH3 + CH3 → C2H6 Using Revised Cross Sections and a Linearized Second-Order Master Equation</title><author>Blitz, M. A ; Green, N. J. B ; Shannon, R. J ; Pilling, M. J ; Seakins, P. W ; Western, C. M ; Robertson, S. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a290t-83f7e7bcb59924250d151693b8ed28d417ac6f6b4c878db90bc534786b0231fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blitz, M. A</creatorcontrib><creatorcontrib>Green, N. J. B</creatorcontrib><creatorcontrib>Shannon, R. J</creatorcontrib><creatorcontrib>Pilling, M. J</creatorcontrib><creatorcontrib>Seakins, P. W</creatorcontrib><creatorcontrib>Western, C. M</creatorcontrib><creatorcontrib>Robertson, S. H</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blitz, M. A</au><au>Green, N. J. B</au><au>Shannon, R. J</au><au>Pilling, M. J</au><au>Seakins, P. W</au><au>Western, C. M</au><au>Robertson, S. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reanalysis of Rate Data for the Reaction CH3 + CH3 → C2H6 Using Revised Cross Sections and a Linearized Second-Order Master Equation</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2015-07-16</date><risdate>2015</risdate><volume>119</volume><issue>28</issue><spage>7668</spage><epage>7682</epage><pages>7668-7682</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Rate coefficients for the CH3 + CH3 reaction, over the temperature range 300–900 K, have been corrected for errors in the absorption coefficients used in the original publication ( Slagle et al., J. Phys. Chem. 1988, 92, 2455−2462 ). These corrections necessitated the development of a detailed model of the B̃2A1′ (3s)–X̃2A2″ transition in CH3 and its validation against both low temperature and high temperature experimental absorption cross sections. A master equation (ME) model was developed, using a local linearization of the second-order decay, which allows the use of standard matrix diagonalization methods for the determination of the rate coefficients for CH3 + CH3. The ME model utilized inverse Laplace transformation to link the microcanonical rate constants for dissociation of C2H6 to the limiting high pressure rate coefficient for association, k ∞(T); it was used to fit the experimental rate coefficients using the Levenberg–Marquardt algorithm to minimize χ2 calculated from the differences between experimental and calculated rate coefficients. Parameters for both k ∞(T) and for energy transfer ⟨ΔE⟩down(T) were varied and optimized in the fitting procedure. A wide range of experimental data were fitted, covering the temperature range 300–2000 K. A high pressure limit of k ∞(T) = 5.76 × 10–11(T/298 K)−0.34 cm3 molecule–1 s–1 was obtained, which agrees well with the best available theoretical expression.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25992467</pmid><doi>10.1021/acs.jpca.5b01002</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2015-07, Vol.119 (28), p.7668-7682 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1697212084 |
source | ACS Publications |
title | Reanalysis of Rate Data for the Reaction CH3 + CH3 → C2H6 Using Revised Cross Sections and a Linearized Second-Order Master Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reanalysis%20of%20Rate%20Data%20for%20the%20Reaction%20CH3%20+%20CH3%20%E2%86%92%20C2H6%20Using%20Revised%20Cross%20Sections%20and%20a%20Linearized%20Second-Order%20Master%20Equation&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Blitz,%20M.%20A&rft.date=2015-07-16&rft.volume=119&rft.issue=28&rft.spage=7668&rft.epage=7682&rft.pages=7668-7682&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.5b01002&rft_dat=%3Cproquest_pubme%3E1697212084%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1697212084&rft_id=info:pmid/25992467&rfr_iscdi=true |