Exact solutions for the selection–mutation equilibrium in the Crow–Kimura evolutionary model

•We find stationary distributions of the Crow–Kimura model for specific fitness landscapes.•We propose a generating function method for the equilibrium distributions.•We give simple analytical expressions for a number of examples.•Our method generalizes the random variable technique. We reformulate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical biosciences 2015-08, Vol.266, p.1-9
Hauptverfasser: Semenov, Yuri S., Novozhilov, Artem S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 1
container_title Mathematical biosciences
container_volume 266
creator Semenov, Yuri S.
Novozhilov, Artem S.
description •We find stationary distributions of the Crow–Kimura model for specific fitness landscapes.•We propose a generating function method for the equilibrium distributions.•We give simple analytical expressions for a number of examples.•Our method generalizes the random variable technique. We reformulate the eigenvalue problem for the selection–mutation equilibrium distribution in the case of a haploid asexually reproduced population in the form of an equation for an unknown probability generating function of this distribution. The special form of this equation in the infinite sequence limit allows us to obtain analytically the steady state distributions for a number of particular cases of the fitness landscape. The general approach is illustrated by examples; theoretical findings are compared with numerical calculations.
doi_str_mv 10.1016/j.mbs.2015.05.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1696189586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025556415001029</els_id><sourcerecordid>1696189586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-71ad3ba0330399580a89f66776ad594bb0ea3c7a4d91e34b83b7216d504850803</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EoqVwADYoSzYJ4zh2YrFCVfkRldjA2jjJVLhK6tZOCuy4AzfkJLi0sEQaaUajN5_sR8gphYQCFRfzpC19kgLlCYSCdI8MaZHLmFGW7ZNh2PCYc5ENyJH3cwCaUyoOySAVABxSOSTPkzdddZG3Td8Zu_DRzLqoe8HIY4PVZvX18dn2nd6MEa5605jSmb6NzOKHGzv7GpB70_ZOR7jeBWn3HrW2xuaYHMx04_Fk10fk6XryOL6Npw83d-OraVwxKbo4p7pmpQbGgEnJC9CFnAmR50LXXGZlCahZleuslhRZVhaszFMqag5ZwaEANiLn29yls6sefada4ytsGr1A23tFhRS0CMkioHSLVs5673Cmls604cWKgtqIVXMVxKqNWAWhIA03Z7v4vmyx_rv4NRmAyy2A4ZNrg075yuCiwtq4IFLV1vwT_w2WfItb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696189586</pqid></control><display><type>article</type><title>Exact solutions for the selection–mutation equilibrium in the Crow–Kimura evolutionary model</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Semenov, Yuri S. ; Novozhilov, Artem S.</creator><creatorcontrib>Semenov, Yuri S. ; Novozhilov, Artem S.</creatorcontrib><description>•We find stationary distributions of the Crow–Kimura model for specific fitness landscapes.•We propose a generating function method for the equilibrium distributions.•We give simple analytical expressions for a number of examples.•Our method generalizes the random variable technique. We reformulate the eigenvalue problem for the selection–mutation equilibrium distribution in the case of a haploid asexually reproduced population in the form of an equation for an unknown probability generating function of this distribution. The special form of this equation in the infinite sequence limit allows us to obtain analytically the steady state distributions for a number of particular cases of the fitness landscape. The general approach is illustrated by examples; theoretical findings are compared with numerical calculations.</description><identifier>ISSN: 0025-5564</identifier><identifier>EISSN: 1879-3134</identifier><identifier>DOI: 10.1016/j.mbs.2015.05.002</identifier><identifier>PMID: 26005029</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biological Evolution ; Crow–Kimura model ; Error threshold ; Gene Frequency ; Models, Biological ; Mutation ; Quasispecies model ; Selection, Genetic ; Selection–mutation equilibrium ; Single peaked landscape</subject><ispartof>Mathematical biosciences, 2015-08, Vol.266, p.1-9</ispartof><rights>2015</rights><rights>Copyright © 2015. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-71ad3ba0330399580a89f66776ad594bb0ea3c7a4d91e34b83b7216d504850803</citedby><cites>FETCH-LOGICAL-c396t-71ad3ba0330399580a89f66776ad594bb0ea3c7a4d91e34b83b7216d504850803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0025556415001029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26005029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Semenov, Yuri S.</creatorcontrib><creatorcontrib>Novozhilov, Artem S.</creatorcontrib><title>Exact solutions for the selection–mutation equilibrium in the Crow–Kimura evolutionary model</title><title>Mathematical biosciences</title><addtitle>Math Biosci</addtitle><description>•We find stationary distributions of the Crow–Kimura model for specific fitness landscapes.•We propose a generating function method for the equilibrium distributions.•We give simple analytical expressions for a number of examples.•Our method generalizes the random variable technique. We reformulate the eigenvalue problem for the selection–mutation equilibrium distribution in the case of a haploid asexually reproduced population in the form of an equation for an unknown probability generating function of this distribution. The special form of this equation in the infinite sequence limit allows us to obtain analytically the steady state distributions for a number of particular cases of the fitness landscape. The general approach is illustrated by examples; theoretical findings are compared with numerical calculations.</description><subject>Biological Evolution</subject><subject>Crow–Kimura model</subject><subject>Error threshold</subject><subject>Gene Frequency</subject><subject>Models, Biological</subject><subject>Mutation</subject><subject>Quasispecies model</subject><subject>Selection, Genetic</subject><subject>Selection–mutation equilibrium</subject><subject>Single peaked landscape</subject><issn>0025-5564</issn><issn>1879-3134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1OwzAQRi0EoqVwADYoSzYJ4zh2YrFCVfkRldjA2jjJVLhK6tZOCuy4AzfkJLi0sEQaaUajN5_sR8gphYQCFRfzpC19kgLlCYSCdI8MaZHLmFGW7ZNh2PCYc5ENyJH3cwCaUyoOySAVABxSOSTPkzdddZG3Td8Zu_DRzLqoe8HIY4PVZvX18dn2nd6MEa5605jSmb6NzOKHGzv7GpB70_ZOR7jeBWn3HrW2xuaYHMx04_Fk10fk6XryOL6Npw83d-OraVwxKbo4p7pmpQbGgEnJC9CFnAmR50LXXGZlCahZleuslhRZVhaszFMqag5ZwaEANiLn29yls6sefada4ytsGr1A23tFhRS0CMkioHSLVs5673Cmls604cWKgtqIVXMVxKqNWAWhIA03Z7v4vmyx_rv4NRmAyy2A4ZNrg075yuCiwtq4IFLV1vwT_w2WfItb</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Semenov, Yuri S.</creator><creator>Novozhilov, Artem S.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150801</creationdate><title>Exact solutions for the selection–mutation equilibrium in the Crow–Kimura evolutionary model</title><author>Semenov, Yuri S. ; Novozhilov, Artem S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-71ad3ba0330399580a89f66776ad594bb0ea3c7a4d91e34b83b7216d504850803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biological Evolution</topic><topic>Crow–Kimura model</topic><topic>Error threshold</topic><topic>Gene Frequency</topic><topic>Models, Biological</topic><topic>Mutation</topic><topic>Quasispecies model</topic><topic>Selection, Genetic</topic><topic>Selection–mutation equilibrium</topic><topic>Single peaked landscape</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Semenov, Yuri S.</creatorcontrib><creatorcontrib>Novozhilov, Artem S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Mathematical biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Semenov, Yuri S.</au><au>Novozhilov, Artem S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact solutions for the selection–mutation equilibrium in the Crow–Kimura evolutionary model</atitle><jtitle>Mathematical biosciences</jtitle><addtitle>Math Biosci</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>266</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0025-5564</issn><eissn>1879-3134</eissn><abstract>•We find stationary distributions of the Crow–Kimura model for specific fitness landscapes.•We propose a generating function method for the equilibrium distributions.•We give simple analytical expressions for a number of examples.•Our method generalizes the random variable technique. We reformulate the eigenvalue problem for the selection–mutation equilibrium distribution in the case of a haploid asexually reproduced population in the form of an equation for an unknown probability generating function of this distribution. The special form of this equation in the infinite sequence limit allows us to obtain analytically the steady state distributions for a number of particular cases of the fitness landscape. The general approach is illustrated by examples; theoretical findings are compared with numerical calculations.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26005029</pmid><doi>10.1016/j.mbs.2015.05.002</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5564
ispartof Mathematical biosciences, 2015-08, Vol.266, p.1-9
issn 0025-5564
1879-3134
language eng
recordid cdi_proquest_miscellaneous_1696189586
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Biological Evolution
Crow–Kimura model
Error threshold
Gene Frequency
Models, Biological
Mutation
Quasispecies model
Selection, Genetic
Selection–mutation equilibrium
Single peaked landscape
title Exact solutions for the selection–mutation equilibrium in the Crow–Kimura evolutionary model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20solutions%20for%20the%20selection%E2%80%93mutation%20equilibrium%20in%20the%20Crow%E2%80%93Kimura%20evolutionary%20model&rft.jtitle=Mathematical%20biosciences&rft.au=Semenov,%20Yuri%20S.&rft.date=2015-08-01&rft.volume=266&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0025-5564&rft.eissn=1879-3134&rft_id=info:doi/10.1016/j.mbs.2015.05.002&rft_dat=%3Cproquest_cross%3E1696189586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696189586&rft_id=info:pmid/26005029&rft_els_id=S0025556415001029&rfr_iscdi=true