Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers
Semiconductor nanowires have received considerable attention in the past decade driven by both unprecedented physics derived from the quantum size effect and strong isotropy and advanced applications as potential building blocks for nanoscale electronics and optoelectronic devices. Recently, organic...
Gespeichert in:
Veröffentlicht in: | Nano letters 2015-07, Vol.15 (7), p.4571-4577 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4577 |
---|---|
container_issue | 7 |
container_start_page | 4571 |
container_title | Nano letters |
container_volume | 15 |
creator | Xing, Jun Liu, Xin Feng Zhang, Qing Ha, Son Tung Yuan, Yan Wen Shen, Chao Sum, Tze Chien Xiong, Qihua |
description | Semiconductor nanowires have received considerable attention in the past decade driven by both unprecedented physics derived from the quantum size effect and strong isotropy and advanced applications as potential building blocks for nanoscale electronics and optoelectronic devices. Recently, organic–inorganic hybrid perovskites have been shown to exhibit high optical absorption coefficient, optimal direct band gap, and long electron/hole diffusion lengths, leading to high-performance photovoltaic devices. Herein, we present the vapor phase synthesis free-standing CH3NH3PbI3, CH3NH3PbBr3, and CH3NH3PbI x Cl3–x perovskite nanowires with high crystallinity. These rectangular cross-sectional perovskite nanowires have good optical properties and long electron hole diffusion length, which ensure adequate gain and efficient optical feedback. Indeed, we have demonstrated optical-pumped room-temperature CH3NH3PbI3 nanowire lasers with near-infrared wavelength of 777 nm, low threshold of 11 μJ/cm2, and a quality factor as high as 405. Our research advocates the promise of optoelectronic devices based on organic–inorganic perovskite nanowires. |
doi_str_mv | 10.1021/acs.nanolett.5b01166 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1695175389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1695175389</sourcerecordid><originalsourceid>FETCH-LOGICAL-a460t-9d45ed0a6d0e5d386ee1f57a757733d3c2be68b9aa9c4a4c285cc2e89002176e3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EgvL4A4S8ZJNix7ETL1EFFAnRCgrbaJJMaCCJi-2A-HuMUliy8kg-947mEHLK2ZSzmF9A6aY99KZF76eyYJwrtUMmXAoWKa3j3b85Sw7IoXOvjDEtJNsnB7FiiRAqnpD1M2yMpcs1OKSPX71fo2scNTVd2JfQ3qGHls6hbSqkS7Tmw701Hul9-PtsLDpah_hq6KFokT4Y00Ur7DZowQ92xNpQbd0x2auhdXiyfY_I0_XVajaP7hY3t7PLuwgSxXykq0RixUBVDGUlMoXIa5lCKtNUiEqUcYEqKzSALhNIyjiTZRljpllwkioUR-R87N1Y8z6g83nXuBLbFno0g8u50pKnUmQ6oMmIltY4Z7HON7bpwH7lnOU_jvPgOP91nG8dh9jZdsNQdFj9hX6lBoCNwE_81Qy2Dwf_3_kNUWaNlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1695175389</pqid></control><display><type>article</type><title>Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers</title><source>ACS Publications</source><creator>Xing, Jun ; Liu, Xin Feng ; Zhang, Qing ; Ha, Son Tung ; Yuan, Yan Wen ; Shen, Chao ; Sum, Tze Chien ; Xiong, Qihua</creator><creatorcontrib>Xing, Jun ; Liu, Xin Feng ; Zhang, Qing ; Ha, Son Tung ; Yuan, Yan Wen ; Shen, Chao ; Sum, Tze Chien ; Xiong, Qihua</creatorcontrib><description>Semiconductor nanowires have received considerable attention in the past decade driven by both unprecedented physics derived from the quantum size effect and strong isotropy and advanced applications as potential building blocks for nanoscale electronics and optoelectronic devices. Recently, organic–inorganic hybrid perovskites have been shown to exhibit high optical absorption coefficient, optimal direct band gap, and long electron/hole diffusion lengths, leading to high-performance photovoltaic devices. Herein, we present the vapor phase synthesis free-standing CH3NH3PbI3, CH3NH3PbBr3, and CH3NH3PbI x Cl3–x perovskite nanowires with high crystallinity. These rectangular cross-sectional perovskite nanowires have good optical properties and long electron hole diffusion length, which ensure adequate gain and efficient optical feedback. Indeed, we have demonstrated optical-pumped room-temperature CH3NH3PbI3 nanowire lasers with near-infrared wavelength of 777 nm, low threshold of 11 μJ/cm2, and a quality factor as high as 405. Our research advocates the promise of optoelectronic devices based on organic–inorganic perovskite nanowires.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.5b01166</identifier><identifier>PMID: 26043362</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2015-07, Vol.15 (7), p.4571-4577</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a460t-9d45ed0a6d0e5d386ee1f57a757733d3c2be68b9aa9c4a4c285cc2e89002176e3</citedby><cites>FETCH-LOGICAL-a460t-9d45ed0a6d0e5d386ee1f57a757733d3c2be68b9aa9c4a4c285cc2e89002176e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5b01166$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.5b01166$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26043362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xing, Jun</creatorcontrib><creatorcontrib>Liu, Xin Feng</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Ha, Son Tung</creatorcontrib><creatorcontrib>Yuan, Yan Wen</creatorcontrib><creatorcontrib>Shen, Chao</creatorcontrib><creatorcontrib>Sum, Tze Chien</creatorcontrib><creatorcontrib>Xiong, Qihua</creatorcontrib><title>Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Semiconductor nanowires have received considerable attention in the past decade driven by both unprecedented physics derived from the quantum size effect and strong isotropy and advanced applications as potential building blocks for nanoscale electronics and optoelectronic devices. Recently, organic–inorganic hybrid perovskites have been shown to exhibit high optical absorption coefficient, optimal direct band gap, and long electron/hole diffusion lengths, leading to high-performance photovoltaic devices. Herein, we present the vapor phase synthesis free-standing CH3NH3PbI3, CH3NH3PbBr3, and CH3NH3PbI x Cl3–x perovskite nanowires with high crystallinity. These rectangular cross-sectional perovskite nanowires have good optical properties and long electron hole diffusion length, which ensure adequate gain and efficient optical feedback. Indeed, we have demonstrated optical-pumped room-temperature CH3NH3PbI3 nanowire lasers with near-infrared wavelength of 777 nm, low threshold of 11 μJ/cm2, and a quality factor as high as 405. Our research advocates the promise of optoelectronic devices based on organic–inorganic perovskite nanowires.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EgvL4A4S8ZJNix7ETL1EFFAnRCgrbaJJMaCCJi-2A-HuMUliy8kg-947mEHLK2ZSzmF9A6aY99KZF76eyYJwrtUMmXAoWKa3j3b85Sw7IoXOvjDEtJNsnB7FiiRAqnpD1M2yMpcs1OKSPX71fo2scNTVd2JfQ3qGHls6hbSqkS7Tmw701Hul9-PtsLDpah_hq6KFokT4Y00Ur7DZowQ92xNpQbd0x2auhdXiyfY_I0_XVajaP7hY3t7PLuwgSxXykq0RixUBVDGUlMoXIa5lCKtNUiEqUcYEqKzSALhNIyjiTZRljpllwkioUR-R87N1Y8z6g83nXuBLbFno0g8u50pKnUmQ6oMmIltY4Z7HON7bpwH7lnOU_jvPgOP91nG8dh9jZdsNQdFj9hX6lBoCNwE_81Qy2Dwf_3_kNUWaNlA</recordid><startdate>20150708</startdate><enddate>20150708</enddate><creator>Xing, Jun</creator><creator>Liu, Xin Feng</creator><creator>Zhang, Qing</creator><creator>Ha, Son Tung</creator><creator>Yuan, Yan Wen</creator><creator>Shen, Chao</creator><creator>Sum, Tze Chien</creator><creator>Xiong, Qihua</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150708</creationdate><title>Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers</title><author>Xing, Jun ; Liu, Xin Feng ; Zhang, Qing ; Ha, Son Tung ; Yuan, Yan Wen ; Shen, Chao ; Sum, Tze Chien ; Xiong, Qihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a460t-9d45ed0a6d0e5d386ee1f57a757733d3c2be68b9aa9c4a4c285cc2e89002176e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Jun</creatorcontrib><creatorcontrib>Liu, Xin Feng</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Ha, Son Tung</creatorcontrib><creatorcontrib>Yuan, Yan Wen</creatorcontrib><creatorcontrib>Shen, Chao</creatorcontrib><creatorcontrib>Sum, Tze Chien</creatorcontrib><creatorcontrib>Xiong, Qihua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Jun</au><au>Liu, Xin Feng</au><au>Zhang, Qing</au><au>Ha, Son Tung</au><au>Yuan, Yan Wen</au><au>Shen, Chao</au><au>Sum, Tze Chien</au><au>Xiong, Qihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2015-07-08</date><risdate>2015</risdate><volume>15</volume><issue>7</issue><spage>4571</spage><epage>4577</epage><pages>4571-4577</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Semiconductor nanowires have received considerable attention in the past decade driven by both unprecedented physics derived from the quantum size effect and strong isotropy and advanced applications as potential building blocks for nanoscale electronics and optoelectronic devices. Recently, organic–inorganic hybrid perovskites have been shown to exhibit high optical absorption coefficient, optimal direct band gap, and long electron/hole diffusion lengths, leading to high-performance photovoltaic devices. Herein, we present the vapor phase synthesis free-standing CH3NH3PbI3, CH3NH3PbBr3, and CH3NH3PbI x Cl3–x perovskite nanowires with high crystallinity. These rectangular cross-sectional perovskite nanowires have good optical properties and long electron hole diffusion length, which ensure adequate gain and efficient optical feedback. Indeed, we have demonstrated optical-pumped room-temperature CH3NH3PbI3 nanowire lasers with near-infrared wavelength of 777 nm, low threshold of 11 μJ/cm2, and a quality factor as high as 405. Our research advocates the promise of optoelectronic devices based on organic–inorganic perovskite nanowires.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26043362</pmid><doi>10.1021/acs.nanolett.5b01166</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2015-07, Vol.15 (7), p.4571-4577 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1695175389 |
source | ACS Publications |
title | Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vapor%20Phase%20Synthesis%20of%20Organometal%20Halide%20Perovskite%20Nanowires%20for%20Tunable%20Room-Temperature%20Nanolasers&rft.jtitle=Nano%20letters&rft.au=Xing,%20Jun&rft.date=2015-07-08&rft.volume=15&rft.issue=7&rft.spage=4571&rft.epage=4577&rft.pages=4571-4577&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.5b01166&rft_dat=%3Cproquest_cross%3E1695175389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1695175389&rft_id=info:pmid/26043362&rfr_iscdi=true |