Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers

Semiconductor nanowires have received considerable attention in the past decade driven by both unprecedented physics derived from the quantum size effect and strong isotropy and advanced applications as potential building blocks for nanoscale electronics and optoelectronic devices. Recently, organic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2015-07, Vol.15 (7), p.4571-4577
Hauptverfasser: Xing, Jun, Liu, Xin Feng, Zhang, Qing, Ha, Son Tung, Yuan, Yan Wen, Shen, Chao, Sum, Tze Chien, Xiong, Qihua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4577
container_issue 7
container_start_page 4571
container_title Nano letters
container_volume 15
creator Xing, Jun
Liu, Xin Feng
Zhang, Qing
Ha, Son Tung
Yuan, Yan Wen
Shen, Chao
Sum, Tze Chien
Xiong, Qihua
description Semiconductor nanowires have received considerable attention in the past decade driven by both unprecedented physics derived from the quantum size effect and strong isotropy and advanced applications as potential building blocks for nanoscale electronics and optoelectronic devices. Recently, organic–inorganic hybrid perovskites have been shown to exhibit high optical absorption coefficient, optimal direct band gap, and long electron/hole diffusion lengths, leading to high-performance photovoltaic devices. Herein, we present the vapor phase synthesis free-standing CH3NH3PbI3, CH3NH3PbBr3, and CH3NH3PbI x Cl3–x perovskite nanowires with high crystallinity. These rectangular cross-sectional perovskite nanowires have good optical properties and long electron hole diffusion length, which ensure adequate gain and efficient optical feedback. Indeed, we have demonstrated optical-pumped room-temperature CH3NH3PbI3 nanowire lasers with near-infrared wavelength of 777 nm, low threshold of 11 μJ/cm2, and a quality factor as high as 405. Our research advocates the promise of optoelectronic devices based on organic–inorganic perovskite nanowires.
doi_str_mv 10.1021/acs.nanolett.5b01166
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1695175389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1695175389</sourcerecordid><originalsourceid>FETCH-LOGICAL-a460t-9d45ed0a6d0e5d386ee1f57a757733d3c2be68b9aa9c4a4c285cc2e89002176e3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EgvL4A4S8ZJNix7ETL1EFFAnRCgrbaJJMaCCJi-2A-HuMUliy8kg-947mEHLK2ZSzmF9A6aY99KZF76eyYJwrtUMmXAoWKa3j3b85Sw7IoXOvjDEtJNsnB7FiiRAqnpD1M2yMpcs1OKSPX71fo2scNTVd2JfQ3qGHls6hbSqkS7Tmw701Hul9-PtsLDpah_hq6KFokT4Y00Ur7DZowQ92xNpQbd0x2auhdXiyfY_I0_XVajaP7hY3t7PLuwgSxXykq0RixUBVDGUlMoXIa5lCKtNUiEqUcYEqKzSALhNIyjiTZRljpllwkioUR-R87N1Y8z6g83nXuBLbFno0g8u50pKnUmQ6oMmIltY4Z7HON7bpwH7lnOU_jvPgOP91nG8dh9jZdsNQdFj9hX6lBoCNwE_81Qy2Dwf_3_kNUWaNlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1695175389</pqid></control><display><type>article</type><title>Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers</title><source>ACS Publications</source><creator>Xing, Jun ; Liu, Xin Feng ; Zhang, Qing ; Ha, Son Tung ; Yuan, Yan Wen ; Shen, Chao ; Sum, Tze Chien ; Xiong, Qihua</creator><creatorcontrib>Xing, Jun ; Liu, Xin Feng ; Zhang, Qing ; Ha, Son Tung ; Yuan, Yan Wen ; Shen, Chao ; Sum, Tze Chien ; Xiong, Qihua</creatorcontrib><description>Semiconductor nanowires have received considerable attention in the past decade driven by both unprecedented physics derived from the quantum size effect and strong isotropy and advanced applications as potential building blocks for nanoscale electronics and optoelectronic devices. Recently, organic–inorganic hybrid perovskites have been shown to exhibit high optical absorption coefficient, optimal direct band gap, and long electron/hole diffusion lengths, leading to high-performance photovoltaic devices. Herein, we present the vapor phase synthesis free-standing CH3NH3PbI3, CH3NH3PbBr3, and CH3NH3PbI x Cl3–x perovskite nanowires with high crystallinity. These rectangular cross-sectional perovskite nanowires have good optical properties and long electron hole diffusion length, which ensure adequate gain and efficient optical feedback. Indeed, we have demonstrated optical-pumped room-temperature CH3NH3PbI3 nanowire lasers with near-infrared wavelength of 777 nm, low threshold of 11 μJ/cm2, and a quality factor as high as 405. Our research advocates the promise of optoelectronic devices based on organic–inorganic perovskite nanowires.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.5b01166</identifier><identifier>PMID: 26043362</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2015-07, Vol.15 (7), p.4571-4577</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a460t-9d45ed0a6d0e5d386ee1f57a757733d3c2be68b9aa9c4a4c285cc2e89002176e3</citedby><cites>FETCH-LOGICAL-a460t-9d45ed0a6d0e5d386ee1f57a757733d3c2be68b9aa9c4a4c285cc2e89002176e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5b01166$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.5b01166$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26043362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xing, Jun</creatorcontrib><creatorcontrib>Liu, Xin Feng</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Ha, Son Tung</creatorcontrib><creatorcontrib>Yuan, Yan Wen</creatorcontrib><creatorcontrib>Shen, Chao</creatorcontrib><creatorcontrib>Sum, Tze Chien</creatorcontrib><creatorcontrib>Xiong, Qihua</creatorcontrib><title>Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Semiconductor nanowires have received considerable attention in the past decade driven by both unprecedented physics derived from the quantum size effect and strong isotropy and advanced applications as potential building blocks for nanoscale electronics and optoelectronic devices. Recently, organic–inorganic hybrid perovskites have been shown to exhibit high optical absorption coefficient, optimal direct band gap, and long electron/hole diffusion lengths, leading to high-performance photovoltaic devices. Herein, we present the vapor phase synthesis free-standing CH3NH3PbI3, CH3NH3PbBr3, and CH3NH3PbI x Cl3–x perovskite nanowires with high crystallinity. These rectangular cross-sectional perovskite nanowires have good optical properties and long electron hole diffusion length, which ensure adequate gain and efficient optical feedback. Indeed, we have demonstrated optical-pumped room-temperature CH3NH3PbI3 nanowire lasers with near-infrared wavelength of 777 nm, low threshold of 11 μJ/cm2, and a quality factor as high as 405. Our research advocates the promise of optoelectronic devices based on organic–inorganic perovskite nanowires.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EgvL4A4S8ZJNix7ETL1EFFAnRCgrbaJJMaCCJi-2A-HuMUliy8kg-947mEHLK2ZSzmF9A6aY99KZF76eyYJwrtUMmXAoWKa3j3b85Sw7IoXOvjDEtJNsnB7FiiRAqnpD1M2yMpcs1OKSPX71fo2scNTVd2JfQ3qGHls6hbSqkS7Tmw701Hul9-PtsLDpah_hq6KFokT4Y00Ur7DZowQ92xNpQbd0x2auhdXiyfY_I0_XVajaP7hY3t7PLuwgSxXykq0RixUBVDGUlMoXIa5lCKtNUiEqUcYEqKzSALhNIyjiTZRljpllwkioUR-R87N1Y8z6g83nXuBLbFno0g8u50pKnUmQ6oMmIltY4Z7HON7bpwH7lnOU_jvPgOP91nG8dh9jZdsNQdFj9hX6lBoCNwE_81Qy2Dwf_3_kNUWaNlA</recordid><startdate>20150708</startdate><enddate>20150708</enddate><creator>Xing, Jun</creator><creator>Liu, Xin Feng</creator><creator>Zhang, Qing</creator><creator>Ha, Son Tung</creator><creator>Yuan, Yan Wen</creator><creator>Shen, Chao</creator><creator>Sum, Tze Chien</creator><creator>Xiong, Qihua</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150708</creationdate><title>Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers</title><author>Xing, Jun ; Liu, Xin Feng ; Zhang, Qing ; Ha, Son Tung ; Yuan, Yan Wen ; Shen, Chao ; Sum, Tze Chien ; Xiong, Qihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a460t-9d45ed0a6d0e5d386ee1f57a757733d3c2be68b9aa9c4a4c285cc2e89002176e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Jun</creatorcontrib><creatorcontrib>Liu, Xin Feng</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Ha, Son Tung</creatorcontrib><creatorcontrib>Yuan, Yan Wen</creatorcontrib><creatorcontrib>Shen, Chao</creatorcontrib><creatorcontrib>Sum, Tze Chien</creatorcontrib><creatorcontrib>Xiong, Qihua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Jun</au><au>Liu, Xin Feng</au><au>Zhang, Qing</au><au>Ha, Son Tung</au><au>Yuan, Yan Wen</au><au>Shen, Chao</au><au>Sum, Tze Chien</au><au>Xiong, Qihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2015-07-08</date><risdate>2015</risdate><volume>15</volume><issue>7</issue><spage>4571</spage><epage>4577</epage><pages>4571-4577</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Semiconductor nanowires have received considerable attention in the past decade driven by both unprecedented physics derived from the quantum size effect and strong isotropy and advanced applications as potential building blocks for nanoscale electronics and optoelectronic devices. Recently, organic–inorganic hybrid perovskites have been shown to exhibit high optical absorption coefficient, optimal direct band gap, and long electron/hole diffusion lengths, leading to high-performance photovoltaic devices. Herein, we present the vapor phase synthesis free-standing CH3NH3PbI3, CH3NH3PbBr3, and CH3NH3PbI x Cl3–x perovskite nanowires with high crystallinity. These rectangular cross-sectional perovskite nanowires have good optical properties and long electron hole diffusion length, which ensure adequate gain and efficient optical feedback. Indeed, we have demonstrated optical-pumped room-temperature CH3NH3PbI3 nanowire lasers with near-infrared wavelength of 777 nm, low threshold of 11 μJ/cm2, and a quality factor as high as 405. Our research advocates the promise of optoelectronic devices based on organic–inorganic perovskite nanowires.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26043362</pmid><doi>10.1021/acs.nanolett.5b01166</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2015-07, Vol.15 (7), p.4571-4577
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1695175389
source ACS Publications
title Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vapor%20Phase%20Synthesis%20of%20Organometal%20Halide%20Perovskite%20Nanowires%20for%20Tunable%20Room-Temperature%20Nanolasers&rft.jtitle=Nano%20letters&rft.au=Xing,%20Jun&rft.date=2015-07-08&rft.volume=15&rft.issue=7&rft.spage=4571&rft.epage=4577&rft.pages=4571-4577&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.5b01166&rft_dat=%3Cproquest_cross%3E1695175389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1695175389&rft_id=info:pmid/26043362&rfr_iscdi=true