Continuous Nanoflow-Scanning Electrochemical Microscopy: Voltammetric Characterization and Application for Accurate and Reproducible Imaging of Enzyme-Labeled Protein Microarrays

The coupling of scanning electrochemical microscopy (SECM) to a continuous nanoflow (CNF) system is accomplished with the use of a microconcentric ring electrode/injector probe. The gold microring electrode encapsulated by a glass sheath is robust and can be beveled and polished. The CNF system, com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2015-04, Vol.87 (8), p.4523-4529
Hauptverfasser: Kai, Tianhan, Chen, Shu, Monterroso, Estuardo, Zhou, Feimeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4529
container_issue 8
container_start_page 4523
container_title Analytical chemistry (Washington)
container_volume 87
creator Kai, Tianhan
Chen, Shu
Monterroso, Estuardo
Zhou, Feimeng
description The coupling of scanning electrochemical microscopy (SECM) to a continuous nanoflow (CNF) system is accomplished with the use of a microconcentric ring electrode/injector probe. The gold microring electrode encapsulated by a glass sheath is robust and can be beveled and polished. The CNF system, comprising a precision gas displacement pump and a rotary valve, is capable of delivering solution to the center of the SECM probe in the range of 1–150 nL/min. Major advantages of the CNF-SECM imaging mode over the conventional SECM generation/collection (G/C) mode include higher imaging resolution, immunity from interferences by species in the bulk solution or at other sites of the substrate, elimination of the feedback current that could interfere with the G/C data interpretation, and versatility of initiating surface reactions/processes via introducing different reactants into the flowing stream. Parameters such as flow rates, probe/substrate separations, and collection efficiencies are examined and optimized. Higher resolution, reproducibility, and accuracy are demonstrated through the application of CNF-SECM to horseradish peroxidase (HRP)-amplified imaging of protein microarrays. By flowing H2O2 and ferrocenemethanol through the injector and detecting the surface-generated ferriceniummethanol, human IgG spots covered with HPR-labeled antihuman IgG can be detected in the range of 13 nM–1.333 μM with a detection limit of 3.0 nM. In addition, consistent images of microarray spots for selective and high-density detection of analytes can be attained.
doi_str_mv 10.1021/acs.analchem.5b00625
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1694981559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3673684691</sourcerecordid><originalsourceid>FETCH-LOGICAL-a508t-b35717a6e5ce61660a2f380e93cbdead78798e39f88bf28a797307db63647c2a3</originalsourceid><addsrcrecordid>eNqNkkuP0zAUhSMEYsrAP0DIEhs2KX7EjsOuqgqMVB7itY1unJsZjxy7YydCnZ_FLyRpOyCxQLOyLH_nnCvfk2XPGV0yytlrMGkJHpy5wn4pG0oVlw-yBZOc5kpr_jBbUEpFzktKz7InKV1Tyhhl6nF2xqUWjBVqkf1aBz9YP4YxkY_gQ-fCz_yrAe-tvyQbh2aIYY6wBhz5YE0MyYTd_g35EdwAfY9DtIasryCCGTDaWxhs8AR8S1a7nZtkh3sXIlkZM0YY8PD4BXcxtKOxjUNy0cPlnBc6svG3-x7zLTTosCWfYxjQ-mMyxAj79DR71IFL-Ox0nmff326-rd_n20_vLtarbQ6S6iFvhCxZCQqlQcWUosA7oSlWwjQtQlvqstIoqk7rpuMayqoUtGwbJVRRGg7iPHt19J0GvRkxDXVvk0HnwOP0XTVTVVFpJmV1H5QXTCgp74GWRSW14mpCX_6DXocxTis_UJpRUXA6UcWRmleTInb1Ltoe4r5mtJ6bUk9Nqe-aUp-aMslenMzHpsf2j-iuGhNAj8As_xv8P8_fm5_QPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1678103420</pqid></control><display><type>article</type><title>Continuous Nanoflow-Scanning Electrochemical Microscopy: Voltammetric Characterization and Application for Accurate and Reproducible Imaging of Enzyme-Labeled Protein Microarrays</title><source>MEDLINE</source><source>ACS Publications</source><creator>Kai, Tianhan ; Chen, Shu ; Monterroso, Estuardo ; Zhou, Feimeng</creator><creatorcontrib>Kai, Tianhan ; Chen, Shu ; Monterroso, Estuardo ; Zhou, Feimeng</creatorcontrib><description>The coupling of scanning electrochemical microscopy (SECM) to a continuous nanoflow (CNF) system is accomplished with the use of a microconcentric ring electrode/injector probe. The gold microring electrode encapsulated by a glass sheath is robust and can be beveled and polished. The CNF system, comprising a precision gas displacement pump and a rotary valve, is capable of delivering solution to the center of the SECM probe in the range of 1–150 nL/min. Major advantages of the CNF-SECM imaging mode over the conventional SECM generation/collection (G/C) mode include higher imaging resolution, immunity from interferences by species in the bulk solution or at other sites of the substrate, elimination of the feedback current that could interfere with the G/C data interpretation, and versatility of initiating surface reactions/processes via introducing different reactants into the flowing stream. Parameters such as flow rates, probe/substrate separations, and collection efficiencies are examined and optimized. Higher resolution, reproducibility, and accuracy are demonstrated through the application of CNF-SECM to horseradish peroxidase (HRP)-amplified imaging of protein microarrays. By flowing H2O2 and ferrocenemethanol through the injector and detecting the surface-generated ferriceniummethanol, human IgG spots covered with HPR-labeled antihuman IgG can be detected in the range of 13 nM–1.333 μM with a detection limit of 3.0 nM. In addition, consistent images of microarray spots for selective and high-density detection of analytes can be attained.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.5b00625</identifier><identifier>PMID: 25831146</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Collection ; Electrocatalysis ; Electrochemical Techniques ; Electrodes ; Enzymes ; Gold - chemistry ; Horseradish Peroxidase - metabolism ; Humans ; Imaging ; Immunoglobulin G - analysis ; Injectors ; Microscopy ; Microscopy - methods ; Nanostructure ; Nanotechnology ; Protein Array Analysis ; Proteins ; Scanning electron microscopy ; Spots</subject><ispartof>Analytical chemistry (Washington), 2015-04, Vol.87 (8), p.4523-4529</ispartof><rights>Copyright © American Chemical Society</rights><rights>Copyright American Chemical Society Apr 21, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a508t-b35717a6e5ce61660a2f380e93cbdead78798e39f88bf28a797307db63647c2a3</citedby><cites>FETCH-LOGICAL-a508t-b35717a6e5ce61660a2f380e93cbdead78798e39f88bf28a797307db63647c2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.5b00625$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.5b00625$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25831146$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kai, Tianhan</creatorcontrib><creatorcontrib>Chen, Shu</creatorcontrib><creatorcontrib>Monterroso, Estuardo</creatorcontrib><creatorcontrib>Zhou, Feimeng</creatorcontrib><title>Continuous Nanoflow-Scanning Electrochemical Microscopy: Voltammetric Characterization and Application for Accurate and Reproducible Imaging of Enzyme-Labeled Protein Microarrays</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The coupling of scanning electrochemical microscopy (SECM) to a continuous nanoflow (CNF) system is accomplished with the use of a microconcentric ring electrode/injector probe. The gold microring electrode encapsulated by a glass sheath is robust and can be beveled and polished. The CNF system, comprising a precision gas displacement pump and a rotary valve, is capable of delivering solution to the center of the SECM probe in the range of 1–150 nL/min. Major advantages of the CNF-SECM imaging mode over the conventional SECM generation/collection (G/C) mode include higher imaging resolution, immunity from interferences by species in the bulk solution or at other sites of the substrate, elimination of the feedback current that could interfere with the G/C data interpretation, and versatility of initiating surface reactions/processes via introducing different reactants into the flowing stream. Parameters such as flow rates, probe/substrate separations, and collection efficiencies are examined and optimized. Higher resolution, reproducibility, and accuracy are demonstrated through the application of CNF-SECM to horseradish peroxidase (HRP)-amplified imaging of protein microarrays. By flowing H2O2 and ferrocenemethanol through the injector and detecting the surface-generated ferriceniummethanol, human IgG spots covered with HPR-labeled antihuman IgG can be detected in the range of 13 nM–1.333 μM with a detection limit of 3.0 nM. In addition, consistent images of microarray spots for selective and high-density detection of analytes can be attained.</description><subject>Collection</subject><subject>Electrocatalysis</subject><subject>Electrochemical Techniques</subject><subject>Electrodes</subject><subject>Enzymes</subject><subject>Gold - chemistry</subject><subject>Horseradish Peroxidase - metabolism</subject><subject>Humans</subject><subject>Imaging</subject><subject>Immunoglobulin G - analysis</subject><subject>Injectors</subject><subject>Microscopy</subject><subject>Microscopy - methods</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Protein Array Analysis</subject><subject>Proteins</subject><subject>Scanning electron microscopy</subject><subject>Spots</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkkuP0zAUhSMEYsrAP0DIEhs2KX7EjsOuqgqMVB7itY1unJsZjxy7YydCnZ_FLyRpOyCxQLOyLH_nnCvfk2XPGV0yytlrMGkJHpy5wn4pG0oVlw-yBZOc5kpr_jBbUEpFzktKz7InKV1Tyhhl6nF2xqUWjBVqkf1aBz9YP4YxkY_gQ-fCz_yrAe-tvyQbh2aIYY6wBhz5YE0MyYTd_g35EdwAfY9DtIasryCCGTDaWxhs8AR8S1a7nZtkh3sXIlkZM0YY8PD4BXcxtKOxjUNy0cPlnBc6svG3-x7zLTTosCWfYxjQ-mMyxAj79DR71IFL-Ox0nmff326-rd_n20_vLtarbQ6S6iFvhCxZCQqlQcWUosA7oSlWwjQtQlvqstIoqk7rpuMayqoUtGwbJVRRGg7iPHt19J0GvRkxDXVvk0HnwOP0XTVTVVFpJmV1H5QXTCgp74GWRSW14mpCX_6DXocxTis_UJpRUXA6UcWRmleTInb1Ltoe4r5mtJ6bUk9Nqe-aUp-aMslenMzHpsf2j-iuGhNAj8As_xv8P8_fm5_QPw</recordid><startdate>20150421</startdate><enddate>20150421</enddate><creator>Kai, Tianhan</creator><creator>Chen, Shu</creator><creator>Monterroso, Estuardo</creator><creator>Zhou, Feimeng</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20150421</creationdate><title>Continuous Nanoflow-Scanning Electrochemical Microscopy: Voltammetric Characterization and Application for Accurate and Reproducible Imaging of Enzyme-Labeled Protein Microarrays</title><author>Kai, Tianhan ; Chen, Shu ; Monterroso, Estuardo ; Zhou, Feimeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a508t-b35717a6e5ce61660a2f380e93cbdead78798e39f88bf28a797307db63647c2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Collection</topic><topic>Electrocatalysis</topic><topic>Electrochemical Techniques</topic><topic>Electrodes</topic><topic>Enzymes</topic><topic>Gold - chemistry</topic><topic>Horseradish Peroxidase - metabolism</topic><topic>Humans</topic><topic>Imaging</topic><topic>Immunoglobulin G - analysis</topic><topic>Injectors</topic><topic>Microscopy</topic><topic>Microscopy - methods</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Protein Array Analysis</topic><topic>Proteins</topic><topic>Scanning electron microscopy</topic><topic>Spots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kai, Tianhan</creatorcontrib><creatorcontrib>Chen, Shu</creatorcontrib><creatorcontrib>Monterroso, Estuardo</creatorcontrib><creatorcontrib>Zhou, Feimeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kai, Tianhan</au><au>Chen, Shu</au><au>Monterroso, Estuardo</au><au>Zhou, Feimeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Nanoflow-Scanning Electrochemical Microscopy: Voltammetric Characterization and Application for Accurate and Reproducible Imaging of Enzyme-Labeled Protein Microarrays</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2015-04-21</date><risdate>2015</risdate><volume>87</volume><issue>8</issue><spage>4523</spage><epage>4529</epage><pages>4523-4529</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>The coupling of scanning electrochemical microscopy (SECM) to a continuous nanoflow (CNF) system is accomplished with the use of a microconcentric ring electrode/injector probe. The gold microring electrode encapsulated by a glass sheath is robust and can be beveled and polished. The CNF system, comprising a precision gas displacement pump and a rotary valve, is capable of delivering solution to the center of the SECM probe in the range of 1–150 nL/min. Major advantages of the CNF-SECM imaging mode over the conventional SECM generation/collection (G/C) mode include higher imaging resolution, immunity from interferences by species in the bulk solution or at other sites of the substrate, elimination of the feedback current that could interfere with the G/C data interpretation, and versatility of initiating surface reactions/processes via introducing different reactants into the flowing stream. Parameters such as flow rates, probe/substrate separations, and collection efficiencies are examined and optimized. Higher resolution, reproducibility, and accuracy are demonstrated through the application of CNF-SECM to horseradish peroxidase (HRP)-amplified imaging of protein microarrays. By flowing H2O2 and ferrocenemethanol through the injector and detecting the surface-generated ferriceniummethanol, human IgG spots covered with HPR-labeled antihuman IgG can be detected in the range of 13 nM–1.333 μM with a detection limit of 3.0 nM. In addition, consistent images of microarray spots for selective and high-density detection of analytes can be attained.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25831146</pmid><doi>10.1021/acs.analchem.5b00625</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2015-04, Vol.87 (8), p.4523-4529
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1694981559
source MEDLINE; ACS Publications
subjects Collection
Electrocatalysis
Electrochemical Techniques
Electrodes
Enzymes
Gold - chemistry
Horseradish Peroxidase - metabolism
Humans
Imaging
Immunoglobulin G - analysis
Injectors
Microscopy
Microscopy - methods
Nanostructure
Nanotechnology
Protein Array Analysis
Proteins
Scanning electron microscopy
Spots
title Continuous Nanoflow-Scanning Electrochemical Microscopy: Voltammetric Characterization and Application for Accurate and Reproducible Imaging of Enzyme-Labeled Protein Microarrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Nanoflow-Scanning%20Electrochemical%20Microscopy:%20Voltammetric%20Characterization%20and%20Application%20for%20Accurate%20and%20Reproducible%20Imaging%20of%20Enzyme-Labeled%20Protein%20Microarrays&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Kai,%20Tianhan&rft.date=2015-04-21&rft.volume=87&rft.issue=8&rft.spage=4523&rft.epage=4529&rft.pages=4523-4529&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.5b00625&rft_dat=%3Cproquest_cross%3E3673684691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1678103420&rft_id=info:pmid/25831146&rfr_iscdi=true