Continuous Nanoflow-Scanning Electrochemical Microscopy: Voltammetric Characterization and Application for Accurate and Reproducible Imaging of Enzyme-Labeled Protein Microarrays
The coupling of scanning electrochemical microscopy (SECM) to a continuous nanoflow (CNF) system is accomplished with the use of a microconcentric ring electrode/injector probe. The gold microring electrode encapsulated by a glass sheath is robust and can be beveled and polished. The CNF system, com...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2015-04, Vol.87 (8), p.4523-4529 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4529 |
---|---|
container_issue | 8 |
container_start_page | 4523 |
container_title | Analytical chemistry (Washington) |
container_volume | 87 |
creator | Kai, Tianhan Chen, Shu Monterroso, Estuardo Zhou, Feimeng |
description | The coupling of scanning electrochemical microscopy (SECM) to a continuous nanoflow (CNF) system is accomplished with the use of a microconcentric ring electrode/injector probe. The gold microring electrode encapsulated by a glass sheath is robust and can be beveled and polished. The CNF system, comprising a precision gas displacement pump and a rotary valve, is capable of delivering solution to the center of the SECM probe in the range of 1–150 nL/min. Major advantages of the CNF-SECM imaging mode over the conventional SECM generation/collection (G/C) mode include higher imaging resolution, immunity from interferences by species in the bulk solution or at other sites of the substrate, elimination of the feedback current that could interfere with the G/C data interpretation, and versatility of initiating surface reactions/processes via introducing different reactants into the flowing stream. Parameters such as flow rates, probe/substrate separations, and collection efficiencies are examined and optimized. Higher resolution, reproducibility, and accuracy are demonstrated through the application of CNF-SECM to horseradish peroxidase (HRP)-amplified imaging of protein microarrays. By flowing H2O2 and ferrocenemethanol through the injector and detecting the surface-generated ferriceniummethanol, human IgG spots covered with HPR-labeled antihuman IgG can be detected in the range of 13 nM–1.333 μM with a detection limit of 3.0 nM. In addition, consistent images of microarray spots for selective and high-density detection of analytes can be attained. |
doi_str_mv | 10.1021/acs.analchem.5b00625 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1694981559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3673684691</sourcerecordid><originalsourceid>FETCH-LOGICAL-a508t-b35717a6e5ce61660a2f380e93cbdead78798e39f88bf28a797307db63647c2a3</originalsourceid><addsrcrecordid>eNqNkkuP0zAUhSMEYsrAP0DIEhs2KX7EjsOuqgqMVB7itY1unJsZjxy7YydCnZ_FLyRpOyCxQLOyLH_nnCvfk2XPGV0yytlrMGkJHpy5wn4pG0oVlw-yBZOc5kpr_jBbUEpFzktKz7InKV1Tyhhl6nF2xqUWjBVqkf1aBz9YP4YxkY_gQ-fCz_yrAe-tvyQbh2aIYY6wBhz5YE0MyYTd_g35EdwAfY9DtIasryCCGTDaWxhs8AR8S1a7nZtkh3sXIlkZM0YY8PD4BXcxtKOxjUNy0cPlnBc6svG3-x7zLTTosCWfYxjQ-mMyxAj79DR71IFL-Ox0nmff326-rd_n20_vLtarbQ6S6iFvhCxZCQqlQcWUosA7oSlWwjQtQlvqstIoqk7rpuMayqoUtGwbJVRRGg7iPHt19J0GvRkxDXVvk0HnwOP0XTVTVVFpJmV1H5QXTCgp74GWRSW14mpCX_6DXocxTis_UJpRUXA6UcWRmleTInb1Ltoe4r5mtJ6bUk9Nqe-aUp-aMslenMzHpsf2j-iuGhNAj8As_xv8P8_fm5_QPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1678103420</pqid></control><display><type>article</type><title>Continuous Nanoflow-Scanning Electrochemical Microscopy: Voltammetric Characterization and Application for Accurate and Reproducible Imaging of Enzyme-Labeled Protein Microarrays</title><source>MEDLINE</source><source>ACS Publications</source><creator>Kai, Tianhan ; Chen, Shu ; Monterroso, Estuardo ; Zhou, Feimeng</creator><creatorcontrib>Kai, Tianhan ; Chen, Shu ; Monterroso, Estuardo ; Zhou, Feimeng</creatorcontrib><description>The coupling of scanning electrochemical microscopy (SECM) to a continuous nanoflow (CNF) system is accomplished with the use of a microconcentric ring electrode/injector probe. The gold microring electrode encapsulated by a glass sheath is robust and can be beveled and polished. The CNF system, comprising a precision gas displacement pump and a rotary valve, is capable of delivering solution to the center of the SECM probe in the range of 1–150 nL/min. Major advantages of the CNF-SECM imaging mode over the conventional SECM generation/collection (G/C) mode include higher imaging resolution, immunity from interferences by species in the bulk solution or at other sites of the substrate, elimination of the feedback current that could interfere with the G/C data interpretation, and versatility of initiating surface reactions/processes via introducing different reactants into the flowing stream. Parameters such as flow rates, probe/substrate separations, and collection efficiencies are examined and optimized. Higher resolution, reproducibility, and accuracy are demonstrated through the application of CNF-SECM to horseradish peroxidase (HRP)-amplified imaging of protein microarrays. By flowing H2O2 and ferrocenemethanol through the injector and detecting the surface-generated ferriceniummethanol, human IgG spots covered with HPR-labeled antihuman IgG can be detected in the range of 13 nM–1.333 μM with a detection limit of 3.0 nM. In addition, consistent images of microarray spots for selective and high-density detection of analytes can be attained.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.5b00625</identifier><identifier>PMID: 25831146</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Collection ; Electrocatalysis ; Electrochemical Techniques ; Electrodes ; Enzymes ; Gold - chemistry ; Horseradish Peroxidase - metabolism ; Humans ; Imaging ; Immunoglobulin G - analysis ; Injectors ; Microscopy ; Microscopy - methods ; Nanostructure ; Nanotechnology ; Protein Array Analysis ; Proteins ; Scanning electron microscopy ; Spots</subject><ispartof>Analytical chemistry (Washington), 2015-04, Vol.87 (8), p.4523-4529</ispartof><rights>Copyright © American Chemical Society</rights><rights>Copyright American Chemical Society Apr 21, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a508t-b35717a6e5ce61660a2f380e93cbdead78798e39f88bf28a797307db63647c2a3</citedby><cites>FETCH-LOGICAL-a508t-b35717a6e5ce61660a2f380e93cbdead78798e39f88bf28a797307db63647c2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.5b00625$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.5b00625$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25831146$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kai, Tianhan</creatorcontrib><creatorcontrib>Chen, Shu</creatorcontrib><creatorcontrib>Monterroso, Estuardo</creatorcontrib><creatorcontrib>Zhou, Feimeng</creatorcontrib><title>Continuous Nanoflow-Scanning Electrochemical Microscopy: Voltammetric Characterization and Application for Accurate and Reproducible Imaging of Enzyme-Labeled Protein Microarrays</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The coupling of scanning electrochemical microscopy (SECM) to a continuous nanoflow (CNF) system is accomplished with the use of a microconcentric ring electrode/injector probe. The gold microring electrode encapsulated by a glass sheath is robust and can be beveled and polished. The CNF system, comprising a precision gas displacement pump and a rotary valve, is capable of delivering solution to the center of the SECM probe in the range of 1–150 nL/min. Major advantages of the CNF-SECM imaging mode over the conventional SECM generation/collection (G/C) mode include higher imaging resolution, immunity from interferences by species in the bulk solution or at other sites of the substrate, elimination of the feedback current that could interfere with the G/C data interpretation, and versatility of initiating surface reactions/processes via introducing different reactants into the flowing stream. Parameters such as flow rates, probe/substrate separations, and collection efficiencies are examined and optimized. Higher resolution, reproducibility, and accuracy are demonstrated through the application of CNF-SECM to horseradish peroxidase (HRP)-amplified imaging of protein microarrays. By flowing H2O2 and ferrocenemethanol through the injector and detecting the surface-generated ferriceniummethanol, human IgG spots covered with HPR-labeled antihuman IgG can be detected in the range of 13 nM–1.333 μM with a detection limit of 3.0 nM. In addition, consistent images of microarray spots for selective and high-density detection of analytes can be attained.</description><subject>Collection</subject><subject>Electrocatalysis</subject><subject>Electrochemical Techniques</subject><subject>Electrodes</subject><subject>Enzymes</subject><subject>Gold - chemistry</subject><subject>Horseradish Peroxidase - metabolism</subject><subject>Humans</subject><subject>Imaging</subject><subject>Immunoglobulin G - analysis</subject><subject>Injectors</subject><subject>Microscopy</subject><subject>Microscopy - methods</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Protein Array Analysis</subject><subject>Proteins</subject><subject>Scanning electron microscopy</subject><subject>Spots</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkkuP0zAUhSMEYsrAP0DIEhs2KX7EjsOuqgqMVB7itY1unJsZjxy7YydCnZ_FLyRpOyCxQLOyLH_nnCvfk2XPGV0yytlrMGkJHpy5wn4pG0oVlw-yBZOc5kpr_jBbUEpFzktKz7InKV1Tyhhl6nF2xqUWjBVqkf1aBz9YP4YxkY_gQ-fCz_yrAe-tvyQbh2aIYY6wBhz5YE0MyYTd_g35EdwAfY9DtIasryCCGTDaWxhs8AR8S1a7nZtkh3sXIlkZM0YY8PD4BXcxtKOxjUNy0cPlnBc6svG3-x7zLTTosCWfYxjQ-mMyxAj79DR71IFL-Ox0nmff326-rd_n20_vLtarbQ6S6iFvhCxZCQqlQcWUosA7oSlWwjQtQlvqstIoqk7rpuMayqoUtGwbJVRRGg7iPHt19J0GvRkxDXVvk0HnwOP0XTVTVVFpJmV1H5QXTCgp74GWRSW14mpCX_6DXocxTis_UJpRUXA6UcWRmleTInb1Ltoe4r5mtJ6bUk9Nqe-aUp-aMslenMzHpsf2j-iuGhNAj8As_xv8P8_fm5_QPw</recordid><startdate>20150421</startdate><enddate>20150421</enddate><creator>Kai, Tianhan</creator><creator>Chen, Shu</creator><creator>Monterroso, Estuardo</creator><creator>Zhou, Feimeng</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20150421</creationdate><title>Continuous Nanoflow-Scanning Electrochemical Microscopy: Voltammetric Characterization and Application for Accurate and Reproducible Imaging of Enzyme-Labeled Protein Microarrays</title><author>Kai, Tianhan ; Chen, Shu ; Monterroso, Estuardo ; Zhou, Feimeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a508t-b35717a6e5ce61660a2f380e93cbdead78798e39f88bf28a797307db63647c2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Collection</topic><topic>Electrocatalysis</topic><topic>Electrochemical Techniques</topic><topic>Electrodes</topic><topic>Enzymes</topic><topic>Gold - chemistry</topic><topic>Horseradish Peroxidase - metabolism</topic><topic>Humans</topic><topic>Imaging</topic><topic>Immunoglobulin G - analysis</topic><topic>Injectors</topic><topic>Microscopy</topic><topic>Microscopy - methods</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Protein Array Analysis</topic><topic>Proteins</topic><topic>Scanning electron microscopy</topic><topic>Spots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kai, Tianhan</creatorcontrib><creatorcontrib>Chen, Shu</creatorcontrib><creatorcontrib>Monterroso, Estuardo</creatorcontrib><creatorcontrib>Zhou, Feimeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kai, Tianhan</au><au>Chen, Shu</au><au>Monterroso, Estuardo</au><au>Zhou, Feimeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Nanoflow-Scanning Electrochemical Microscopy: Voltammetric Characterization and Application for Accurate and Reproducible Imaging of Enzyme-Labeled Protein Microarrays</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2015-04-21</date><risdate>2015</risdate><volume>87</volume><issue>8</issue><spage>4523</spage><epage>4529</epage><pages>4523-4529</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>The coupling of scanning electrochemical microscopy (SECM) to a continuous nanoflow (CNF) system is accomplished with the use of a microconcentric ring electrode/injector probe. The gold microring electrode encapsulated by a glass sheath is robust and can be beveled and polished. The CNF system, comprising a precision gas displacement pump and a rotary valve, is capable of delivering solution to the center of the SECM probe in the range of 1–150 nL/min. Major advantages of the CNF-SECM imaging mode over the conventional SECM generation/collection (G/C) mode include higher imaging resolution, immunity from interferences by species in the bulk solution or at other sites of the substrate, elimination of the feedback current that could interfere with the G/C data interpretation, and versatility of initiating surface reactions/processes via introducing different reactants into the flowing stream. Parameters such as flow rates, probe/substrate separations, and collection efficiencies are examined and optimized. Higher resolution, reproducibility, and accuracy are demonstrated through the application of CNF-SECM to horseradish peroxidase (HRP)-amplified imaging of protein microarrays. By flowing H2O2 and ferrocenemethanol through the injector and detecting the surface-generated ferriceniummethanol, human IgG spots covered with HPR-labeled antihuman IgG can be detected in the range of 13 nM–1.333 μM with a detection limit of 3.0 nM. In addition, consistent images of microarray spots for selective and high-density detection of analytes can be attained.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25831146</pmid><doi>10.1021/acs.analchem.5b00625</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2015-04, Vol.87 (8), p.4523-4529 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1694981559 |
source | MEDLINE; ACS Publications |
subjects | Collection Electrocatalysis Electrochemical Techniques Electrodes Enzymes Gold - chemistry Horseradish Peroxidase - metabolism Humans Imaging Immunoglobulin G - analysis Injectors Microscopy Microscopy - methods Nanostructure Nanotechnology Protein Array Analysis Proteins Scanning electron microscopy Spots |
title | Continuous Nanoflow-Scanning Electrochemical Microscopy: Voltammetric Characterization and Application for Accurate and Reproducible Imaging of Enzyme-Labeled Protein Microarrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Nanoflow-Scanning%20Electrochemical%20Microscopy:%20Voltammetric%20Characterization%20and%20Application%20for%20Accurate%20and%20Reproducible%20Imaging%20of%20Enzyme-Labeled%20Protein%20Microarrays&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Kai,%20Tianhan&rft.date=2015-04-21&rft.volume=87&rft.issue=8&rft.spage=4523&rft.epage=4529&rft.pages=4523-4529&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.5b00625&rft_dat=%3Cproquest_cross%3E3673684691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1678103420&rft_id=info:pmid/25831146&rfr_iscdi=true |