Self-Assembled PAA-Based Nanoparticles as Potential Gene and Protein Delivery Systems

A series of nanoparticles is prepared via layer‐by‐layer assembly of oppositely charged, synthetic biocompatible polyamidoamine polymers as potential carriers. Particle size, surface charge and internal chain mobility are quantified as a function of the polymer type and number of layers. The effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular bioscience 2013-05, Vol.13 (5), p.641-649
Hauptverfasser: Griffiths, Peter C., Mauro, Nicolo, Murphy, Damien M., Carter, Emma, Richardson, Simon C. W., Dyer, Paul, Ferruti, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 649
container_issue 5
container_start_page 641
container_title Macromolecular bioscience
container_volume 13
creator Griffiths, Peter C.
Mauro, Nicolo
Murphy, Damien M.
Carter, Emma
Richardson, Simon C. W.
Dyer, Paul
Ferruti, Paolo
description A series of nanoparticles is prepared via layer‐by‐layer assembly of oppositely charged, synthetic biocompatible polyamidoamine polymers as potential carriers. Particle size, surface charge and internal chain mobility are quantified as a function of the polymer type and number of layers. The effect of addition of surfactant is examined to simulate the effects of nanoparticle dissolution. The cyctotoxicity of these particles (in epithelia and murine cell lines) are orders of magnitude lower than polyethyleneimine controls. Stable nanoparticles may be prepared from mixtures of strongly, oppositely charged polymers, but less successfully from weakly charged polymers, and, given their acceptable toxicity characteristics, such modularly designed constructs show promise for drug and gene delivery. A series of designer nanoparticles prepared via a layer‐by‐layer assembly of oppositely charged, synthetic biocompatible polyamidoamine polymers shows promise as potential carriers for genes and proteins. The particle size, surface charge, and internal chain mobility can be tailored by a judicious choice of polymer type and number of layers.
doi_str_mv 10.1002/mabi.201200462
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1694973761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677944040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4892-accbd2bec8e44a6c39fafc5e805269ca0d3ec8b4270acee3940a6cc2fb4b80fd3</originalsourceid><addsrcrecordid>eNqNkUtv1DAURi0Eog_YskRZsslw_YgdLzMDDEWljFRKl5bj3EgGJxnsDHT-Pa6mjNiVla_s83268iHkFYUFBWBvB9v6BQPKAIRkT8gplVSWFdXV0-NcqxNyltJ3AKpqzZ6TE8YryjhXp-TmGkNfNinh0Absik3TlEub8nRlx2lr4-xdwFTYVGymGcfZ21CsccTCjpmO-c6PxTsM_hfGfXG9TzMO6QV51tuQ8OXDeU5uPrz_uvpYXn5ZX6yay9KJvEhpnWs71qKrUQgrHde97V2FNVRMameh4_mtFUyBdYhcC8iUY30r2hr6jp-TN4febZx-7jDNZvDJYQh2xGmXDJVaaMWVpP-BKqWFAAGPo7ziICqoZUYXB9TFKaWIvdlGP9i4NxTMvSBzL8gcBeXA64fuXTtgd8T_GsmAPgC_fcD9I3Xmc7O8-Le8PGR9tnB3zNr4w8j8C5W5vVqbjfr2Sd4umVnxP_P1q4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1353045086</pqid></control><display><type>article</type><title>Self-Assembled PAA-Based Nanoparticles as Potential Gene and Protein Delivery Systems</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Griffiths, Peter C. ; Mauro, Nicolo ; Murphy, Damien M. ; Carter, Emma ; Richardson, Simon C. W. ; Dyer, Paul ; Ferruti, Paolo</creator><creatorcontrib>Griffiths, Peter C. ; Mauro, Nicolo ; Murphy, Damien M. ; Carter, Emma ; Richardson, Simon C. W. ; Dyer, Paul ; Ferruti, Paolo</creatorcontrib><description>A series of nanoparticles is prepared via layer‐by‐layer assembly of oppositely charged, synthetic biocompatible polyamidoamine polymers as potential carriers. Particle size, surface charge and internal chain mobility are quantified as a function of the polymer type and number of layers. The effect of addition of surfactant is examined to simulate the effects of nanoparticle dissolution. The cyctotoxicity of these particles (in epithelia and murine cell lines) are orders of magnitude lower than polyethyleneimine controls. Stable nanoparticles may be prepared from mixtures of strongly, oppositely charged polymers, but less successfully from weakly charged polymers, and, given their acceptable toxicity characteristics, such modularly designed constructs show promise for drug and gene delivery. A series of designer nanoparticles prepared via a layer‐by‐layer assembly of oppositely charged, synthetic biocompatible polyamidoamine polymers shows promise as potential carriers for genes and proteins. The particle size, surface charge, and internal chain mobility can be tailored by a judicious choice of polymer type and number of layers.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.201200462</identifier><identifier>PMID: 23512337</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Animals ; Assembly ; Biocompatibility ; Carriers ; Cell Line ; Chain mobility ; Charging ; Drug Delivery Systems ; Electron Spin Resonance Spectroscopy ; gene delivery ; Gene Transfer Techniques ; Genes ; Hydrogen-Ion Concentration ; layer-by-layer assembly ; Light ; Molecular Weight ; Nanoparticles ; Nanoparticles - chemistry ; Particle Size ; Polyamines - chemistry ; Proteins ; Rotation ; Scattering, Radiation ; self-assembly ; Spin Labels ; Static Electricity ; zeta-potential</subject><ispartof>Macromolecular bioscience, 2013-05, Vol.13 (5), p.641-649</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4892-accbd2bec8e44a6c39fafc5e805269ca0d3ec8b4270acee3940a6cc2fb4b80fd3</citedby><cites>FETCH-LOGICAL-c4892-accbd2bec8e44a6c39fafc5e805269ca0d3ec8b4270acee3940a6cc2fb4b80fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.201200462$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.201200462$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23512337$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Griffiths, Peter C.</creatorcontrib><creatorcontrib>Mauro, Nicolo</creatorcontrib><creatorcontrib>Murphy, Damien M.</creatorcontrib><creatorcontrib>Carter, Emma</creatorcontrib><creatorcontrib>Richardson, Simon C. W.</creatorcontrib><creatorcontrib>Dyer, Paul</creatorcontrib><creatorcontrib>Ferruti, Paolo</creatorcontrib><title>Self-Assembled PAA-Based Nanoparticles as Potential Gene and Protein Delivery Systems</title><title>Macromolecular bioscience</title><addtitle>Macromol. Biosci</addtitle><description>A series of nanoparticles is prepared via layer‐by‐layer assembly of oppositely charged, synthetic biocompatible polyamidoamine polymers as potential carriers. Particle size, surface charge and internal chain mobility are quantified as a function of the polymer type and number of layers. The effect of addition of surfactant is examined to simulate the effects of nanoparticle dissolution. The cyctotoxicity of these particles (in epithelia and murine cell lines) are orders of magnitude lower than polyethyleneimine controls. Stable nanoparticles may be prepared from mixtures of strongly, oppositely charged polymers, but less successfully from weakly charged polymers, and, given their acceptable toxicity characteristics, such modularly designed constructs show promise for drug and gene delivery. A series of designer nanoparticles prepared via a layer‐by‐layer assembly of oppositely charged, synthetic biocompatible polyamidoamine polymers shows promise as potential carriers for genes and proteins. The particle size, surface charge, and internal chain mobility can be tailored by a judicious choice of polymer type and number of layers.</description><subject>Animals</subject><subject>Assembly</subject><subject>Biocompatibility</subject><subject>Carriers</subject><subject>Cell Line</subject><subject>Chain mobility</subject><subject>Charging</subject><subject>Drug Delivery Systems</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>gene delivery</subject><subject>Gene Transfer Techniques</subject><subject>Genes</subject><subject>Hydrogen-Ion Concentration</subject><subject>layer-by-layer assembly</subject><subject>Light</subject><subject>Molecular Weight</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Polyamines - chemistry</subject><subject>Proteins</subject><subject>Rotation</subject><subject>Scattering, Radiation</subject><subject>self-assembly</subject><subject>Spin Labels</subject><subject>Static Electricity</subject><subject>zeta-potential</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAURi0Eog_YskRZsslw_YgdLzMDDEWljFRKl5bj3EgGJxnsDHT-Pa6mjNiVla_s83268iHkFYUFBWBvB9v6BQPKAIRkT8gplVSWFdXV0-NcqxNyltJ3AKpqzZ6TE8YryjhXp-TmGkNfNinh0Absik3TlEub8nRlx2lr4-xdwFTYVGymGcfZ21CsccTCjpmO-c6PxTsM_hfGfXG9TzMO6QV51tuQ8OXDeU5uPrz_uvpYXn5ZX6yay9KJvEhpnWs71qKrUQgrHde97V2FNVRMameh4_mtFUyBdYhcC8iUY30r2hr6jp-TN4febZx-7jDNZvDJYQh2xGmXDJVaaMWVpP-BKqWFAAGPo7ziICqoZUYXB9TFKaWIvdlGP9i4NxTMvSBzL8gcBeXA64fuXTtgd8T_GsmAPgC_fcD9I3Xmc7O8-Le8PGR9tnB3zNr4w8j8C5W5vVqbjfr2Sd4umVnxP_P1q4I</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Griffiths, Peter C.</creator><creator>Mauro, Nicolo</creator><creator>Murphy, Damien M.</creator><creator>Carter, Emma</creator><creator>Richardson, Simon C. W.</creator><creator>Dyer, Paul</creator><creator>Ferruti, Paolo</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201305</creationdate><title>Self-Assembled PAA-Based Nanoparticles as Potential Gene and Protein Delivery Systems</title><author>Griffiths, Peter C. ; Mauro, Nicolo ; Murphy, Damien M. ; Carter, Emma ; Richardson, Simon C. W. ; Dyer, Paul ; Ferruti, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4892-accbd2bec8e44a6c39fafc5e805269ca0d3ec8b4270acee3940a6cc2fb4b80fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Assembly</topic><topic>Biocompatibility</topic><topic>Carriers</topic><topic>Cell Line</topic><topic>Chain mobility</topic><topic>Charging</topic><topic>Drug Delivery Systems</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>gene delivery</topic><topic>Gene Transfer Techniques</topic><topic>Genes</topic><topic>Hydrogen-Ion Concentration</topic><topic>layer-by-layer assembly</topic><topic>Light</topic><topic>Molecular Weight</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Polyamines - chemistry</topic><topic>Proteins</topic><topic>Rotation</topic><topic>Scattering, Radiation</topic><topic>self-assembly</topic><topic>Spin Labels</topic><topic>Static Electricity</topic><topic>zeta-potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griffiths, Peter C.</creatorcontrib><creatorcontrib>Mauro, Nicolo</creatorcontrib><creatorcontrib>Murphy, Damien M.</creatorcontrib><creatorcontrib>Carter, Emma</creatorcontrib><creatorcontrib>Richardson, Simon C. W.</creatorcontrib><creatorcontrib>Dyer, Paul</creatorcontrib><creatorcontrib>Ferruti, Paolo</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griffiths, Peter C.</au><au>Mauro, Nicolo</au><au>Murphy, Damien M.</au><au>Carter, Emma</au><au>Richardson, Simon C. W.</au><au>Dyer, Paul</au><au>Ferruti, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Assembled PAA-Based Nanoparticles as Potential Gene and Protein Delivery Systems</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol. Biosci</addtitle><date>2013-05</date><risdate>2013</risdate><volume>13</volume><issue>5</issue><spage>641</spage><epage>649</epage><pages>641-649</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>A series of nanoparticles is prepared via layer‐by‐layer assembly of oppositely charged, synthetic biocompatible polyamidoamine polymers as potential carriers. Particle size, surface charge and internal chain mobility are quantified as a function of the polymer type and number of layers. The effect of addition of surfactant is examined to simulate the effects of nanoparticle dissolution. The cyctotoxicity of these particles (in epithelia and murine cell lines) are orders of magnitude lower than polyethyleneimine controls. Stable nanoparticles may be prepared from mixtures of strongly, oppositely charged polymers, but less successfully from weakly charged polymers, and, given their acceptable toxicity characteristics, such modularly designed constructs show promise for drug and gene delivery. A series of designer nanoparticles prepared via a layer‐by‐layer assembly of oppositely charged, synthetic biocompatible polyamidoamine polymers shows promise as potential carriers for genes and proteins. The particle size, surface charge, and internal chain mobility can be tailored by a judicious choice of polymer type and number of layers.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>23512337</pmid><doi>10.1002/mabi.201200462</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-5187
ispartof Macromolecular bioscience, 2013-05, Vol.13 (5), p.641-649
issn 1616-5187
1616-5195
language eng
recordid cdi_proquest_miscellaneous_1694973761
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Assembly
Biocompatibility
Carriers
Cell Line
Chain mobility
Charging
Drug Delivery Systems
Electron Spin Resonance Spectroscopy
gene delivery
Gene Transfer Techniques
Genes
Hydrogen-Ion Concentration
layer-by-layer assembly
Light
Molecular Weight
Nanoparticles
Nanoparticles - chemistry
Particle Size
Polyamines - chemistry
Proteins
Rotation
Scattering, Radiation
self-assembly
Spin Labels
Static Electricity
zeta-potential
title Self-Assembled PAA-Based Nanoparticles as Potential Gene and Protein Delivery Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Assembled%20PAA-Based%20Nanoparticles%20as%20Potential%20Gene%20and%20Protein%20Delivery%20Systems&rft.jtitle=Macromolecular%20bioscience&rft.au=Griffiths,%20Peter%20C.&rft.date=2013-05&rft.volume=13&rft.issue=5&rft.spage=641&rft.epage=649&rft.pages=641-649&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.201200462&rft_dat=%3Cproquest_cross%3E1677944040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1353045086&rft_id=info:pmid/23512337&rfr_iscdi=true