Gut microbiota, nutrient sensing and energy balance
The gastrointestinal (GI) tract is a highly specialized sensory organ that provides crucial negative feedback during a meal, partly via a gut–brain axis. More specifically, enteroendocrine cells located throughout the GI tract are able to sense and respond to specific nutrients, releasing gut peptid...
Gespeichert in:
Veröffentlicht in: | Diabetes, obesity & metabolism obesity & metabolism, 2014-09, Vol.16 (S1), p.68-76 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | S1 |
container_start_page | 68 |
container_title | Diabetes, obesity & metabolism |
container_volume | 16 |
creator | Duca, F. A. Lam, T. K. T. |
description | The gastrointestinal (GI) tract is a highly specialized sensory organ that provides crucial negative feedback during a meal, partly via a gut–brain axis. More specifically, enteroendocrine cells located throughout the GI tract are able to sense and respond to specific nutrients, releasing gut peptides that act in a paracrine, autocrine or endocrine fashion to regulate energy balance, thus controlling both food intake and possibly energy expenditure. Furthermore, the gut microbiota has been shown to provide a substantial metabolic and physiological contribution to the host, and metabolic disease such as obesity has been associated with aberrant gut microbiota and microbiome. Interestingly, recent evidence suggests that the gut microbiota can impact the gut–brain axis controlling energy balance, at both the level of intestinal nutrient‐sensing mechanisms, as well as potentially at the sites of integration in the central nervous system. A better understanding of the intricate relationship between the gut microbiota and host energy‐regulating pathways is crucial for uncovering the mechanisms responsible for the development of metabolic diseases and for possible therapeutic strategies. |
doi_str_mv | 10.1111/dom.12340 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1694973052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1694973052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5250-2e24a44d453544cf935ff1f8508e7dc61ef3fddf1504d18aaff422c66d7823d43</originalsourceid><addsrcrecordid>eNqFkE1LwzAYgIMoOqcH_4AUvChYl-82R5laxTlBFMFLyJpEqv2YSYvu3xvt5kEQc0kOz_uQ9wFgD8ETFM5IN9UJwoTCNTBAlJMYEczXv984TgXEW2Db-xcIISVpsgm2MMMQYiEGgGRdG1VF7ppZ0bTqOKq71hWmbiNval_Uz5GqdWRq454X0UyVqs7NDtiwqvRmd3kPwcPF-f34Mp7cZlfj00mcM8xgjA2milJNGWGU5lYQZi2yKYOpSXTOkbHEam0Rg1SjVClrKcY55zpJMdGUDMFh75275q0zvpVV4XNThk-YpvMScUFFQiDD_6OMI4QZoyigB7_Ql6ZzdVhEBpWgmDDOAnXUU6GM985YOXdFpdxCIii_ossQXX5HD-z-0tjNKqN_yFXlAIx64L0ozeJvkzy7vVkp436i8K35-JlQ7lXyhCRMPk4zeSfEffJ0PZUZ-QRjQJeZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059423565</pqid></control><display><type>article</type><title>Gut microbiota, nutrient sensing and energy balance</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Duca, F. A. ; Lam, T. K. T.</creator><creatorcontrib>Duca, F. A. ; Lam, T. K. T.</creatorcontrib><description>The gastrointestinal (GI) tract is a highly specialized sensory organ that provides crucial negative feedback during a meal, partly via a gut–brain axis. More specifically, enteroendocrine cells located throughout the GI tract are able to sense and respond to specific nutrients, releasing gut peptides that act in a paracrine, autocrine or endocrine fashion to regulate energy balance, thus controlling both food intake and possibly energy expenditure. Furthermore, the gut microbiota has been shown to provide a substantial metabolic and physiological contribution to the host, and metabolic disease such as obesity has been associated with aberrant gut microbiota and microbiome. Interestingly, recent evidence suggests that the gut microbiota can impact the gut–brain axis controlling energy balance, at both the level of intestinal nutrient‐sensing mechanisms, as well as potentially at the sites of integration in the central nervous system. A better understanding of the intricate relationship between the gut microbiota and host energy‐regulating pathways is crucial for uncovering the mechanisms responsible for the development of metabolic diseases and for possible therapeutic strategies.</description><identifier>ISSN: 1462-8902</identifier><identifier>EISSN: 1463-1326</identifier><identifier>DOI: 10.1111/dom.12340</identifier><identifier>PMID: 25200299</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Appetite Regulation ; Autocrine signalling ; Brain - metabolism ; Central nervous system ; Digestive system ; Energy balance ; Energy expenditure ; Energy Intake ; Energy Metabolism ; Enteroendocrine Cells - cytology ; Enteroendocrine Cells - metabolism ; Enteroendocrine Cells - microbiology ; Enteroendocrine Cells - secretion ; Feedback, Physiological ; Food intake ; Gastrointestinal tract ; Gastrointestinal Tract - cytology ; Gastrointestinal Tract - innervation ; Gastrointestinal Tract - microbiology ; Gastrointestinal Tract - secretion ; gut peptides ; gut-brain axis ; Humans ; Intestinal microflora ; Intestinal Mucosa - cytology ; Intestinal Mucosa - innervation ; Intestinal Mucosa - microbiology ; Intestinal Mucosa - secretion ; Metabolic Diseases - metabolism ; Metabolic Diseases - microbiology ; Metabolic Diseases - pathology ; Metabolic Diseases - physiopathology ; Metabolic disorders ; Metabolism ; microbiome ; Microbiomes ; Microbiota ; Models, Biological ; Mucous Membrane - cytology ; Mucous Membrane - innervation ; Mucous Membrane - microbiology ; Mucous Membrane - secretion ; Neurons - metabolism ; obesity ; Paracrine signalling ; Sense organs</subject><ispartof>Diabetes, obesity & metabolism, 2014-09, Vol.16 (S1), p.68-76</ispartof><rights>2014 John Wiley & Sons Ltd</rights><rights>2014 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5250-2e24a44d453544cf935ff1f8508e7dc61ef3fddf1504d18aaff422c66d7823d43</citedby><cites>FETCH-LOGICAL-c5250-2e24a44d453544cf935ff1f8508e7dc61ef3fddf1504d18aaff422c66d7823d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fdom.12340$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fdom.12340$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25200299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duca, F. A.</creatorcontrib><creatorcontrib>Lam, T. K. T.</creatorcontrib><title>Gut microbiota, nutrient sensing and energy balance</title><title>Diabetes, obesity & metabolism</title><addtitle>Diabetes Obes Metab</addtitle><description>The gastrointestinal (GI) tract is a highly specialized sensory organ that provides crucial negative feedback during a meal, partly via a gut–brain axis. More specifically, enteroendocrine cells located throughout the GI tract are able to sense and respond to specific nutrients, releasing gut peptides that act in a paracrine, autocrine or endocrine fashion to regulate energy balance, thus controlling both food intake and possibly energy expenditure. Furthermore, the gut microbiota has been shown to provide a substantial metabolic and physiological contribution to the host, and metabolic disease such as obesity has been associated with aberrant gut microbiota and microbiome. Interestingly, recent evidence suggests that the gut microbiota can impact the gut–brain axis controlling energy balance, at both the level of intestinal nutrient‐sensing mechanisms, as well as potentially at the sites of integration in the central nervous system. A better understanding of the intricate relationship between the gut microbiota and host energy‐regulating pathways is crucial for uncovering the mechanisms responsible for the development of metabolic diseases and for possible therapeutic strategies.</description><subject>Animals</subject><subject>Appetite Regulation</subject><subject>Autocrine signalling</subject><subject>Brain - metabolism</subject><subject>Central nervous system</subject><subject>Digestive system</subject><subject>Energy balance</subject><subject>Energy expenditure</subject><subject>Energy Intake</subject><subject>Energy Metabolism</subject><subject>Enteroendocrine Cells - cytology</subject><subject>Enteroendocrine Cells - metabolism</subject><subject>Enteroendocrine Cells - microbiology</subject><subject>Enteroendocrine Cells - secretion</subject><subject>Feedback, Physiological</subject><subject>Food intake</subject><subject>Gastrointestinal tract</subject><subject>Gastrointestinal Tract - cytology</subject><subject>Gastrointestinal Tract - innervation</subject><subject>Gastrointestinal Tract - microbiology</subject><subject>Gastrointestinal Tract - secretion</subject><subject>gut peptides</subject><subject>gut-brain axis</subject><subject>Humans</subject><subject>Intestinal microflora</subject><subject>Intestinal Mucosa - cytology</subject><subject>Intestinal Mucosa - innervation</subject><subject>Intestinal Mucosa - microbiology</subject><subject>Intestinal Mucosa - secretion</subject><subject>Metabolic Diseases - metabolism</subject><subject>Metabolic Diseases - microbiology</subject><subject>Metabolic Diseases - pathology</subject><subject>Metabolic Diseases - physiopathology</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>microbiome</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Models, Biological</subject><subject>Mucous Membrane - cytology</subject><subject>Mucous Membrane - innervation</subject><subject>Mucous Membrane - microbiology</subject><subject>Mucous Membrane - secretion</subject><subject>Neurons - metabolism</subject><subject>obesity</subject><subject>Paracrine signalling</subject><subject>Sense organs</subject><issn>1462-8902</issn><issn>1463-1326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LwzAYgIMoOqcH_4AUvChYl-82R5laxTlBFMFLyJpEqv2YSYvu3xvt5kEQc0kOz_uQ9wFgD8ETFM5IN9UJwoTCNTBAlJMYEczXv984TgXEW2Db-xcIISVpsgm2MMMQYiEGgGRdG1VF7ppZ0bTqOKq71hWmbiNval_Uz5GqdWRq454X0UyVqs7NDtiwqvRmd3kPwcPF-f34Mp7cZlfj00mcM8xgjA2milJNGWGU5lYQZi2yKYOpSXTOkbHEam0Rg1SjVClrKcY55zpJMdGUDMFh75275q0zvpVV4XNThk-YpvMScUFFQiDD_6OMI4QZoyigB7_Ql6ZzdVhEBpWgmDDOAnXUU6GM985YOXdFpdxCIii_ossQXX5HD-z-0tjNKqN_yFXlAIx64L0ozeJvkzy7vVkp436i8K35-JlQ7lXyhCRMPk4zeSfEffJ0PZUZ-QRjQJeZ</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Duca, F. A.</creator><creator>Lam, T. K. T.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201409</creationdate><title>Gut microbiota, nutrient sensing and energy balance</title><author>Duca, F. A. ; Lam, T. K. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5250-2e24a44d453544cf935ff1f8508e7dc61ef3fddf1504d18aaff422c66d7823d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Appetite Regulation</topic><topic>Autocrine signalling</topic><topic>Brain - metabolism</topic><topic>Central nervous system</topic><topic>Digestive system</topic><topic>Energy balance</topic><topic>Energy expenditure</topic><topic>Energy Intake</topic><topic>Energy Metabolism</topic><topic>Enteroendocrine Cells - cytology</topic><topic>Enteroendocrine Cells - metabolism</topic><topic>Enteroendocrine Cells - microbiology</topic><topic>Enteroendocrine Cells - secretion</topic><topic>Feedback, Physiological</topic><topic>Food intake</topic><topic>Gastrointestinal tract</topic><topic>Gastrointestinal Tract - cytology</topic><topic>Gastrointestinal Tract - innervation</topic><topic>Gastrointestinal Tract - microbiology</topic><topic>Gastrointestinal Tract - secretion</topic><topic>gut peptides</topic><topic>gut-brain axis</topic><topic>Humans</topic><topic>Intestinal microflora</topic><topic>Intestinal Mucosa - cytology</topic><topic>Intestinal Mucosa - innervation</topic><topic>Intestinal Mucosa - microbiology</topic><topic>Intestinal Mucosa - secretion</topic><topic>Metabolic Diseases - metabolism</topic><topic>Metabolic Diseases - microbiology</topic><topic>Metabolic Diseases - pathology</topic><topic>Metabolic Diseases - physiopathology</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>microbiome</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Models, Biological</topic><topic>Mucous Membrane - cytology</topic><topic>Mucous Membrane - innervation</topic><topic>Mucous Membrane - microbiology</topic><topic>Mucous Membrane - secretion</topic><topic>Neurons - metabolism</topic><topic>obesity</topic><topic>Paracrine signalling</topic><topic>Sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duca, F. A.</creatorcontrib><creatorcontrib>Lam, T. K. T.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Diabetes, obesity & metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duca, F. A.</au><au>Lam, T. K. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gut microbiota, nutrient sensing and energy balance</atitle><jtitle>Diabetes, obesity & metabolism</jtitle><addtitle>Diabetes Obes Metab</addtitle><date>2014-09</date><risdate>2014</risdate><volume>16</volume><issue>S1</issue><spage>68</spage><epage>76</epage><pages>68-76</pages><issn>1462-8902</issn><eissn>1463-1326</eissn><abstract>The gastrointestinal (GI) tract is a highly specialized sensory organ that provides crucial negative feedback during a meal, partly via a gut–brain axis. More specifically, enteroendocrine cells located throughout the GI tract are able to sense and respond to specific nutrients, releasing gut peptides that act in a paracrine, autocrine or endocrine fashion to regulate energy balance, thus controlling both food intake and possibly energy expenditure. Furthermore, the gut microbiota has been shown to provide a substantial metabolic and physiological contribution to the host, and metabolic disease such as obesity has been associated with aberrant gut microbiota and microbiome. Interestingly, recent evidence suggests that the gut microbiota can impact the gut–brain axis controlling energy balance, at both the level of intestinal nutrient‐sensing mechanisms, as well as potentially at the sites of integration in the central nervous system. A better understanding of the intricate relationship between the gut microbiota and host energy‐regulating pathways is crucial for uncovering the mechanisms responsible for the development of metabolic diseases and for possible therapeutic strategies.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>25200299</pmid><doi>10.1111/dom.12340</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-8902 |
ispartof | Diabetes, obesity & metabolism, 2014-09, Vol.16 (S1), p.68-76 |
issn | 1462-8902 1463-1326 |
language | eng |
recordid | cdi_proquest_miscellaneous_1694973052 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Appetite Regulation Autocrine signalling Brain - metabolism Central nervous system Digestive system Energy balance Energy expenditure Energy Intake Energy Metabolism Enteroendocrine Cells - cytology Enteroendocrine Cells - metabolism Enteroendocrine Cells - microbiology Enteroendocrine Cells - secretion Feedback, Physiological Food intake Gastrointestinal tract Gastrointestinal Tract - cytology Gastrointestinal Tract - innervation Gastrointestinal Tract - microbiology Gastrointestinal Tract - secretion gut peptides gut-brain axis Humans Intestinal microflora Intestinal Mucosa - cytology Intestinal Mucosa - innervation Intestinal Mucosa - microbiology Intestinal Mucosa - secretion Metabolic Diseases - metabolism Metabolic Diseases - microbiology Metabolic Diseases - pathology Metabolic Diseases - physiopathology Metabolic disorders Metabolism microbiome Microbiomes Microbiota Models, Biological Mucous Membrane - cytology Mucous Membrane - innervation Mucous Membrane - microbiology Mucous Membrane - secretion Neurons - metabolism obesity Paracrine signalling Sense organs |
title | Gut microbiota, nutrient sensing and energy balance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gut%20microbiota,%20nutrient%20sensing%20and%20energy%20balance&rft.jtitle=Diabetes,%20obesity%20&%20metabolism&rft.au=Duca,%20F.%20A.&rft.date=2014-09&rft.volume=16&rft.issue=S1&rft.spage=68&rft.epage=76&rft.pages=68-76&rft.issn=1462-8902&rft.eissn=1463-1326&rft_id=info:doi/10.1111/dom.12340&rft_dat=%3Cproquest_cross%3E1694973052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059423565&rft_id=info:pmid/25200299&rfr_iscdi=true |