Gut microbiota, nutrient sensing and energy balance

The gastrointestinal (GI) tract is a highly specialized sensory organ that provides crucial negative feedback during a meal, partly via a gut–brain axis. More specifically, enteroendocrine cells located throughout the GI tract are able to sense and respond to specific nutrients, releasing gut peptid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes, obesity & metabolism obesity & metabolism, 2014-09, Vol.16 (S1), p.68-76
Hauptverfasser: Duca, F. A., Lam, T. K. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue S1
container_start_page 68
container_title Diabetes, obesity & metabolism
container_volume 16
creator Duca, F. A.
Lam, T. K. T.
description The gastrointestinal (GI) tract is a highly specialized sensory organ that provides crucial negative feedback during a meal, partly via a gut–brain axis. More specifically, enteroendocrine cells located throughout the GI tract are able to sense and respond to specific nutrients, releasing gut peptides that act in a paracrine, autocrine or endocrine fashion to regulate energy balance, thus controlling both food intake and possibly energy expenditure. Furthermore, the gut microbiota has been shown to provide a substantial metabolic and physiological contribution to the host, and metabolic disease such as obesity has been associated with aberrant gut microbiota and microbiome. Interestingly, recent evidence suggests that the gut microbiota can impact the gut–brain axis controlling energy balance, at both the level of intestinal nutrient‐sensing mechanisms, as well as potentially at the sites of integration in the central nervous system. A better understanding of the intricate relationship between the gut microbiota and host energy‐regulating pathways is crucial for uncovering the mechanisms responsible for the development of metabolic diseases and for possible therapeutic strategies.
doi_str_mv 10.1111/dom.12340
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1694973052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1694973052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5250-2e24a44d453544cf935ff1f8508e7dc61ef3fddf1504d18aaff422c66d7823d43</originalsourceid><addsrcrecordid>eNqFkE1LwzAYgIMoOqcH_4AUvChYl-82R5laxTlBFMFLyJpEqv2YSYvu3xvt5kEQc0kOz_uQ9wFgD8ETFM5IN9UJwoTCNTBAlJMYEczXv984TgXEW2Db-xcIISVpsgm2MMMQYiEGgGRdG1VF7ppZ0bTqOKq71hWmbiNval_Uz5GqdWRq454X0UyVqs7NDtiwqvRmd3kPwcPF-f34Mp7cZlfj00mcM8xgjA2milJNGWGU5lYQZi2yKYOpSXTOkbHEam0Rg1SjVClrKcY55zpJMdGUDMFh75275q0zvpVV4XNThk-YpvMScUFFQiDD_6OMI4QZoyigB7_Ql6ZzdVhEBpWgmDDOAnXUU6GM985YOXdFpdxCIii_ossQXX5HD-z-0tjNKqN_yFXlAIx64L0ozeJvkzy7vVkp436i8K35-JlQ7lXyhCRMPk4zeSfEffJ0PZUZ-QRjQJeZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059423565</pqid></control><display><type>article</type><title>Gut microbiota, nutrient sensing and energy balance</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Duca, F. A. ; Lam, T. K. T.</creator><creatorcontrib>Duca, F. A. ; Lam, T. K. T.</creatorcontrib><description>The gastrointestinal (GI) tract is a highly specialized sensory organ that provides crucial negative feedback during a meal, partly via a gut–brain axis. More specifically, enteroendocrine cells located throughout the GI tract are able to sense and respond to specific nutrients, releasing gut peptides that act in a paracrine, autocrine or endocrine fashion to regulate energy balance, thus controlling both food intake and possibly energy expenditure. Furthermore, the gut microbiota has been shown to provide a substantial metabolic and physiological contribution to the host, and metabolic disease such as obesity has been associated with aberrant gut microbiota and microbiome. Interestingly, recent evidence suggests that the gut microbiota can impact the gut–brain axis controlling energy balance, at both the level of intestinal nutrient‐sensing mechanisms, as well as potentially at the sites of integration in the central nervous system. A better understanding of the intricate relationship between the gut microbiota and host energy‐regulating pathways is crucial for uncovering the mechanisms responsible for the development of metabolic diseases and for possible therapeutic strategies.</description><identifier>ISSN: 1462-8902</identifier><identifier>EISSN: 1463-1326</identifier><identifier>DOI: 10.1111/dom.12340</identifier><identifier>PMID: 25200299</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Appetite Regulation ; Autocrine signalling ; Brain - metabolism ; Central nervous system ; Digestive system ; Energy balance ; Energy expenditure ; Energy Intake ; Energy Metabolism ; Enteroendocrine Cells - cytology ; Enteroendocrine Cells - metabolism ; Enteroendocrine Cells - microbiology ; Enteroendocrine Cells - secretion ; Feedback, Physiological ; Food intake ; Gastrointestinal tract ; Gastrointestinal Tract - cytology ; Gastrointestinal Tract - innervation ; Gastrointestinal Tract - microbiology ; Gastrointestinal Tract - secretion ; gut peptides ; gut-brain axis ; Humans ; Intestinal microflora ; Intestinal Mucosa - cytology ; Intestinal Mucosa - innervation ; Intestinal Mucosa - microbiology ; Intestinal Mucosa - secretion ; Metabolic Diseases - metabolism ; Metabolic Diseases - microbiology ; Metabolic Diseases - pathology ; Metabolic Diseases - physiopathology ; Metabolic disorders ; Metabolism ; microbiome ; Microbiomes ; Microbiota ; Models, Biological ; Mucous Membrane - cytology ; Mucous Membrane - innervation ; Mucous Membrane - microbiology ; Mucous Membrane - secretion ; Neurons - metabolism ; obesity ; Paracrine signalling ; Sense organs</subject><ispartof>Diabetes, obesity &amp; metabolism, 2014-09, Vol.16 (S1), p.68-76</ispartof><rights>2014 John Wiley &amp; Sons Ltd</rights><rights>2014 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5250-2e24a44d453544cf935ff1f8508e7dc61ef3fddf1504d18aaff422c66d7823d43</citedby><cites>FETCH-LOGICAL-c5250-2e24a44d453544cf935ff1f8508e7dc61ef3fddf1504d18aaff422c66d7823d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fdom.12340$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fdom.12340$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25200299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duca, F. A.</creatorcontrib><creatorcontrib>Lam, T. K. T.</creatorcontrib><title>Gut microbiota, nutrient sensing and energy balance</title><title>Diabetes, obesity &amp; metabolism</title><addtitle>Diabetes Obes Metab</addtitle><description>The gastrointestinal (GI) tract is a highly specialized sensory organ that provides crucial negative feedback during a meal, partly via a gut–brain axis. More specifically, enteroendocrine cells located throughout the GI tract are able to sense and respond to specific nutrients, releasing gut peptides that act in a paracrine, autocrine or endocrine fashion to regulate energy balance, thus controlling both food intake and possibly energy expenditure. Furthermore, the gut microbiota has been shown to provide a substantial metabolic and physiological contribution to the host, and metabolic disease such as obesity has been associated with aberrant gut microbiota and microbiome. Interestingly, recent evidence suggests that the gut microbiota can impact the gut–brain axis controlling energy balance, at both the level of intestinal nutrient‐sensing mechanisms, as well as potentially at the sites of integration in the central nervous system. A better understanding of the intricate relationship between the gut microbiota and host energy‐regulating pathways is crucial for uncovering the mechanisms responsible for the development of metabolic diseases and for possible therapeutic strategies.</description><subject>Animals</subject><subject>Appetite Regulation</subject><subject>Autocrine signalling</subject><subject>Brain - metabolism</subject><subject>Central nervous system</subject><subject>Digestive system</subject><subject>Energy balance</subject><subject>Energy expenditure</subject><subject>Energy Intake</subject><subject>Energy Metabolism</subject><subject>Enteroendocrine Cells - cytology</subject><subject>Enteroendocrine Cells - metabolism</subject><subject>Enteroendocrine Cells - microbiology</subject><subject>Enteroendocrine Cells - secretion</subject><subject>Feedback, Physiological</subject><subject>Food intake</subject><subject>Gastrointestinal tract</subject><subject>Gastrointestinal Tract - cytology</subject><subject>Gastrointestinal Tract - innervation</subject><subject>Gastrointestinal Tract - microbiology</subject><subject>Gastrointestinal Tract - secretion</subject><subject>gut peptides</subject><subject>gut-brain axis</subject><subject>Humans</subject><subject>Intestinal microflora</subject><subject>Intestinal Mucosa - cytology</subject><subject>Intestinal Mucosa - innervation</subject><subject>Intestinal Mucosa - microbiology</subject><subject>Intestinal Mucosa - secretion</subject><subject>Metabolic Diseases - metabolism</subject><subject>Metabolic Diseases - microbiology</subject><subject>Metabolic Diseases - pathology</subject><subject>Metabolic Diseases - physiopathology</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>microbiome</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Models, Biological</subject><subject>Mucous Membrane - cytology</subject><subject>Mucous Membrane - innervation</subject><subject>Mucous Membrane - microbiology</subject><subject>Mucous Membrane - secretion</subject><subject>Neurons - metabolism</subject><subject>obesity</subject><subject>Paracrine signalling</subject><subject>Sense organs</subject><issn>1462-8902</issn><issn>1463-1326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LwzAYgIMoOqcH_4AUvChYl-82R5laxTlBFMFLyJpEqv2YSYvu3xvt5kEQc0kOz_uQ9wFgD8ETFM5IN9UJwoTCNTBAlJMYEczXv984TgXEW2Db-xcIISVpsgm2MMMQYiEGgGRdG1VF7ppZ0bTqOKq71hWmbiNval_Uz5GqdWRq454X0UyVqs7NDtiwqvRmd3kPwcPF-f34Mp7cZlfj00mcM8xgjA2milJNGWGU5lYQZi2yKYOpSXTOkbHEam0Rg1SjVClrKcY55zpJMdGUDMFh75275q0zvpVV4XNThk-YpvMScUFFQiDD_6OMI4QZoyigB7_Ql6ZzdVhEBpWgmDDOAnXUU6GM985YOXdFpdxCIii_ossQXX5HD-z-0tjNKqN_yFXlAIx64L0ozeJvkzy7vVkp436i8K35-JlQ7lXyhCRMPk4zeSfEffJ0PZUZ-QRjQJeZ</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Duca, F. A.</creator><creator>Lam, T. K. T.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201409</creationdate><title>Gut microbiota, nutrient sensing and energy balance</title><author>Duca, F. A. ; Lam, T. K. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5250-2e24a44d453544cf935ff1f8508e7dc61ef3fddf1504d18aaff422c66d7823d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Appetite Regulation</topic><topic>Autocrine signalling</topic><topic>Brain - metabolism</topic><topic>Central nervous system</topic><topic>Digestive system</topic><topic>Energy balance</topic><topic>Energy expenditure</topic><topic>Energy Intake</topic><topic>Energy Metabolism</topic><topic>Enteroendocrine Cells - cytology</topic><topic>Enteroendocrine Cells - metabolism</topic><topic>Enteroendocrine Cells - microbiology</topic><topic>Enteroendocrine Cells - secretion</topic><topic>Feedback, Physiological</topic><topic>Food intake</topic><topic>Gastrointestinal tract</topic><topic>Gastrointestinal Tract - cytology</topic><topic>Gastrointestinal Tract - innervation</topic><topic>Gastrointestinal Tract - microbiology</topic><topic>Gastrointestinal Tract - secretion</topic><topic>gut peptides</topic><topic>gut-brain axis</topic><topic>Humans</topic><topic>Intestinal microflora</topic><topic>Intestinal Mucosa - cytology</topic><topic>Intestinal Mucosa - innervation</topic><topic>Intestinal Mucosa - microbiology</topic><topic>Intestinal Mucosa - secretion</topic><topic>Metabolic Diseases - metabolism</topic><topic>Metabolic Diseases - microbiology</topic><topic>Metabolic Diseases - pathology</topic><topic>Metabolic Diseases - physiopathology</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>microbiome</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Models, Biological</topic><topic>Mucous Membrane - cytology</topic><topic>Mucous Membrane - innervation</topic><topic>Mucous Membrane - microbiology</topic><topic>Mucous Membrane - secretion</topic><topic>Neurons - metabolism</topic><topic>obesity</topic><topic>Paracrine signalling</topic><topic>Sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duca, F. A.</creatorcontrib><creatorcontrib>Lam, T. K. T.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Diabetes, obesity &amp; metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duca, F. A.</au><au>Lam, T. K. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gut microbiota, nutrient sensing and energy balance</atitle><jtitle>Diabetes, obesity &amp; metabolism</jtitle><addtitle>Diabetes Obes Metab</addtitle><date>2014-09</date><risdate>2014</risdate><volume>16</volume><issue>S1</issue><spage>68</spage><epage>76</epage><pages>68-76</pages><issn>1462-8902</issn><eissn>1463-1326</eissn><abstract>The gastrointestinal (GI) tract is a highly specialized sensory organ that provides crucial negative feedback during a meal, partly via a gut–brain axis. More specifically, enteroendocrine cells located throughout the GI tract are able to sense and respond to specific nutrients, releasing gut peptides that act in a paracrine, autocrine or endocrine fashion to regulate energy balance, thus controlling both food intake and possibly energy expenditure. Furthermore, the gut microbiota has been shown to provide a substantial metabolic and physiological contribution to the host, and metabolic disease such as obesity has been associated with aberrant gut microbiota and microbiome. Interestingly, recent evidence suggests that the gut microbiota can impact the gut–brain axis controlling energy balance, at both the level of intestinal nutrient‐sensing mechanisms, as well as potentially at the sites of integration in the central nervous system. A better understanding of the intricate relationship between the gut microbiota and host energy‐regulating pathways is crucial for uncovering the mechanisms responsible for the development of metabolic diseases and for possible therapeutic strategies.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>25200299</pmid><doi>10.1111/dom.12340</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-8902
ispartof Diabetes, obesity & metabolism, 2014-09, Vol.16 (S1), p.68-76
issn 1462-8902
1463-1326
language eng
recordid cdi_proquest_miscellaneous_1694973052
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Appetite Regulation
Autocrine signalling
Brain - metabolism
Central nervous system
Digestive system
Energy balance
Energy expenditure
Energy Intake
Energy Metabolism
Enteroendocrine Cells - cytology
Enteroendocrine Cells - metabolism
Enteroendocrine Cells - microbiology
Enteroendocrine Cells - secretion
Feedback, Physiological
Food intake
Gastrointestinal tract
Gastrointestinal Tract - cytology
Gastrointestinal Tract - innervation
Gastrointestinal Tract - microbiology
Gastrointestinal Tract - secretion
gut peptides
gut-brain axis
Humans
Intestinal microflora
Intestinal Mucosa - cytology
Intestinal Mucosa - innervation
Intestinal Mucosa - microbiology
Intestinal Mucosa - secretion
Metabolic Diseases - metabolism
Metabolic Diseases - microbiology
Metabolic Diseases - pathology
Metabolic Diseases - physiopathology
Metabolic disorders
Metabolism
microbiome
Microbiomes
Microbiota
Models, Biological
Mucous Membrane - cytology
Mucous Membrane - innervation
Mucous Membrane - microbiology
Mucous Membrane - secretion
Neurons - metabolism
obesity
Paracrine signalling
Sense organs
title Gut microbiota, nutrient sensing and energy balance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gut%20microbiota,%20nutrient%20sensing%20and%20energy%20balance&rft.jtitle=Diabetes,%20obesity%20&%20metabolism&rft.au=Duca,%20F.%20A.&rft.date=2014-09&rft.volume=16&rft.issue=S1&rft.spage=68&rft.epage=76&rft.pages=68-76&rft.issn=1462-8902&rft.eissn=1463-1326&rft_id=info:doi/10.1111/dom.12340&rft_dat=%3Cproquest_cross%3E1694973052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059423565&rft_id=info:pmid/25200299&rfr_iscdi=true