Mechanistic studies of the cationic binding pocket of CYP2C9 in vitro and in silico: metabolism of nonionizable analogs of tienilic acid
Tienilic acid (TA) is selectively oxidized at the C-5 position of the thiophene ring by the human liver enzyme cytochrome P450 2C9 (CYP2C9). This oxidation is mediated by the proximal positioning of the thiophene over the heme iron, which is proposed to be coordinated by an interaction of the TA car...
Gespeichert in:
Veröffentlicht in: | Drug metabolism and disposition 2014-11, Vol.42 (11), p.1955-1963 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1963 |
---|---|
container_issue | 11 |
container_start_page | 1955 |
container_title | Drug metabolism and disposition |
container_volume | 42 |
creator | Tay, Suzanne Le, Hoa Ford, Kevin A Nelson, Sid D Khojasteh, S Cyrus Rademacher, Peter M |
description | Tienilic acid (TA) is selectively oxidized at the C-5 position of the thiophene ring by the human liver enzyme cytochrome P450 2C9 (CYP2C9). This oxidation is mediated by the proximal positioning of the thiophene over the heme iron, which is proposed to be coordinated by an interaction of the TA carboxylic acid to a cationic binding pocket in the enzyme active site. In this study, we investigated how chemical modification of TA influences the bioactivation by CYP2C9. For this investigation, nine analogs of TA were chosen with substitutions on either side of the molecule. We tested three parameters, including CYP2C9 inhibition, metabolic profiling, and in silico docking. Of the 10 compounds tested, only two (TA and a noncarboxyl analog) resulted in competitive and time-dependent inhibition of CYP2C9. Metabolic profiling revealed a trend in which substitution of the carboxylate with nonionizable functional groups resulted in metabolic switching from oxidation of the aromatic ring to dealkylation reactions at the opposite side of the structure. The in silico modeling predicted an opposite binding orientation to that of TA for many analogs, including the 3-thenoyl regio-isomer analog, which contradicts previous models. Together these data show that disrupting interactions with the cationic binding pocket of CYP2C9 will impact the sites of metabolism and inhibition of the enzyme. |
doi_str_mv | 10.1124/dmd.114.059022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1694971537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1694971537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2832-793b51666876c28ea10b96d9e50402c5676cace00c5b94bbfed0b4d0c809c7253</originalsourceid><addsrcrecordid>eNqFkU9P3DAQxS0EKlvaK0fkI5csY8d2Ym7VCmglUDmA1J4i_5kFQ2Jv4ywSfIJ-7Dpa2mulkWb85jfPh0fIMYMlY1yc-cGXQSxBauB8jyyY5KwC0D_2yaI0qLSU6pB8zPkJgAlR6w_kkEvWNqIVC_L7Bt2jiSFPwdE8bX3ATNOaTo9InZlCikW3IfoQH-gmuWec5vXq5y1faRoifQnTmKiJfn7k0AeXzumAk7GpD3mY4VhMSr0Z22MhTZ8edn8EjPMBNS74T-RgbfqMn9_7Ebm_vLhbfa2uv199W325rhxva141uraSKaXaRhUFDQOrldcoQQB3UhXZOARw0mph7Ro9WOHBtaBdw2V9RE53vpsx_dpinrohZId9byKmbe6Y0kI3TNbN_1HZKtACmragyx3qxpTziOtuM4bBjK8dg24OqitBlUF0u6DKwcm799YO6P_hf5Op_wDgS47Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1586094078</pqid></control><display><type>article</type><title>Mechanistic studies of the cationic binding pocket of CYP2C9 in vitro and in silico: metabolism of nonionizable analogs of tienilic acid</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Tay, Suzanne ; Le, Hoa ; Ford, Kevin A ; Nelson, Sid D ; Khojasteh, S Cyrus ; Rademacher, Peter M</creator><creatorcontrib>Tay, Suzanne ; Le, Hoa ; Ford, Kevin A ; Nelson, Sid D ; Khojasteh, S Cyrus ; Rademacher, Peter M</creatorcontrib><description>Tienilic acid (TA) is selectively oxidized at the C-5 position of the thiophene ring by the human liver enzyme cytochrome P450 2C9 (CYP2C9). This oxidation is mediated by the proximal positioning of the thiophene over the heme iron, which is proposed to be coordinated by an interaction of the TA carboxylic acid to a cationic binding pocket in the enzyme active site. In this study, we investigated how chemical modification of TA influences the bioactivation by CYP2C9. For this investigation, nine analogs of TA were chosen with substitutions on either side of the molecule. We tested three parameters, including CYP2C9 inhibition, metabolic profiling, and in silico docking. Of the 10 compounds tested, only two (TA and a noncarboxyl analog) resulted in competitive and time-dependent inhibition of CYP2C9. Metabolic profiling revealed a trend in which substitution of the carboxylate with nonionizable functional groups resulted in metabolic switching from oxidation of the aromatic ring to dealkylation reactions at the opposite side of the structure. The in silico modeling predicted an opposite binding orientation to that of TA for many analogs, including the 3-thenoyl regio-isomer analog, which contradicts previous models. Together these data show that disrupting interactions with the cationic binding pocket of CYP2C9 will impact the sites of metabolism and inhibition of the enzyme.</description><identifier>ISSN: 0090-9556</identifier><identifier>EISSN: 1521-009X</identifier><identifier>DOI: 10.1124/dmd.114.059022</identifier><identifier>PMID: 25187484</identifier><language>eng</language><publisher>United States</publisher><subject>Cations ; Computer Simulation ; Cytochrome P-450 CYP2C9 - metabolism ; Diuretics - metabolism ; Diuretics - pharmacokinetics ; Humans ; In Vitro Techniques ; Substrate Specificity ; Ticrynafen - metabolism ; Ticrynafen - pharmacokinetics ; Uricosuric Agents - metabolism ; Uricosuric Agents - pharmacokinetics</subject><ispartof>Drug metabolism and disposition, 2014-11, Vol.42 (11), p.1955-1963</ispartof><rights>Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2832-793b51666876c28ea10b96d9e50402c5676cace00c5b94bbfed0b4d0c809c7253</citedby><cites>FETCH-LOGICAL-c2832-793b51666876c28ea10b96d9e50402c5676cace00c5b94bbfed0b4d0c809c7253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25187484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tay, Suzanne</creatorcontrib><creatorcontrib>Le, Hoa</creatorcontrib><creatorcontrib>Ford, Kevin A</creatorcontrib><creatorcontrib>Nelson, Sid D</creatorcontrib><creatorcontrib>Khojasteh, S Cyrus</creatorcontrib><creatorcontrib>Rademacher, Peter M</creatorcontrib><title>Mechanistic studies of the cationic binding pocket of CYP2C9 in vitro and in silico: metabolism of nonionizable analogs of tienilic acid</title><title>Drug metabolism and disposition</title><addtitle>Drug Metab Dispos</addtitle><description>Tienilic acid (TA) is selectively oxidized at the C-5 position of the thiophene ring by the human liver enzyme cytochrome P450 2C9 (CYP2C9). This oxidation is mediated by the proximal positioning of the thiophene over the heme iron, which is proposed to be coordinated by an interaction of the TA carboxylic acid to a cationic binding pocket in the enzyme active site. In this study, we investigated how chemical modification of TA influences the bioactivation by CYP2C9. For this investigation, nine analogs of TA were chosen with substitutions on either side of the molecule. We tested three parameters, including CYP2C9 inhibition, metabolic profiling, and in silico docking. Of the 10 compounds tested, only two (TA and a noncarboxyl analog) resulted in competitive and time-dependent inhibition of CYP2C9. Metabolic profiling revealed a trend in which substitution of the carboxylate with nonionizable functional groups resulted in metabolic switching from oxidation of the aromatic ring to dealkylation reactions at the opposite side of the structure. The in silico modeling predicted an opposite binding orientation to that of TA for many analogs, including the 3-thenoyl regio-isomer analog, which contradicts previous models. Together these data show that disrupting interactions with the cationic binding pocket of CYP2C9 will impact the sites of metabolism and inhibition of the enzyme.</description><subject>Cations</subject><subject>Computer Simulation</subject><subject>Cytochrome P-450 CYP2C9 - metabolism</subject><subject>Diuretics - metabolism</subject><subject>Diuretics - pharmacokinetics</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Substrate Specificity</subject><subject>Ticrynafen - metabolism</subject><subject>Ticrynafen - pharmacokinetics</subject><subject>Uricosuric Agents - metabolism</subject><subject>Uricosuric Agents - pharmacokinetics</subject><issn>0090-9556</issn><issn>1521-009X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9P3DAQxS0EKlvaK0fkI5csY8d2Ym7VCmglUDmA1J4i_5kFQ2Jv4ywSfIJ-7Dpa2mulkWb85jfPh0fIMYMlY1yc-cGXQSxBauB8jyyY5KwC0D_2yaI0qLSU6pB8zPkJgAlR6w_kkEvWNqIVC_L7Bt2jiSFPwdE8bX3ATNOaTo9InZlCikW3IfoQH-gmuWec5vXq5y1faRoifQnTmKiJfn7k0AeXzumAk7GpD3mY4VhMSr0Z22MhTZ8edn8EjPMBNS74T-RgbfqMn9_7Ebm_vLhbfa2uv199W325rhxva141uraSKaXaRhUFDQOrldcoQQB3UhXZOARw0mph7Ro9WOHBtaBdw2V9RE53vpsx_dpinrohZId9byKmbe6Y0kI3TNbN_1HZKtACmragyx3qxpTziOtuM4bBjK8dg24OqitBlUF0u6DKwcm799YO6P_hf5Op_wDgS47Q</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Tay, Suzanne</creator><creator>Le, Hoa</creator><creator>Ford, Kevin A</creator><creator>Nelson, Sid D</creator><creator>Khojasteh, S Cyrus</creator><creator>Rademacher, Peter M</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>201411</creationdate><title>Mechanistic studies of the cationic binding pocket of CYP2C9 in vitro and in silico: metabolism of nonionizable analogs of tienilic acid</title><author>Tay, Suzanne ; Le, Hoa ; Ford, Kevin A ; Nelson, Sid D ; Khojasteh, S Cyrus ; Rademacher, Peter M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2832-793b51666876c28ea10b96d9e50402c5676cace00c5b94bbfed0b4d0c809c7253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cations</topic><topic>Computer Simulation</topic><topic>Cytochrome P-450 CYP2C9 - metabolism</topic><topic>Diuretics - metabolism</topic><topic>Diuretics - pharmacokinetics</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Substrate Specificity</topic><topic>Ticrynafen - metabolism</topic><topic>Ticrynafen - pharmacokinetics</topic><topic>Uricosuric Agents - metabolism</topic><topic>Uricosuric Agents - pharmacokinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tay, Suzanne</creatorcontrib><creatorcontrib>Le, Hoa</creatorcontrib><creatorcontrib>Ford, Kevin A</creatorcontrib><creatorcontrib>Nelson, Sid D</creatorcontrib><creatorcontrib>Khojasteh, S Cyrus</creatorcontrib><creatorcontrib>Rademacher, Peter M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Drug metabolism and disposition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tay, Suzanne</au><au>Le, Hoa</au><au>Ford, Kevin A</au><au>Nelson, Sid D</au><au>Khojasteh, S Cyrus</au><au>Rademacher, Peter M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic studies of the cationic binding pocket of CYP2C9 in vitro and in silico: metabolism of nonionizable analogs of tienilic acid</atitle><jtitle>Drug metabolism and disposition</jtitle><addtitle>Drug Metab Dispos</addtitle><date>2014-11</date><risdate>2014</risdate><volume>42</volume><issue>11</issue><spage>1955</spage><epage>1963</epage><pages>1955-1963</pages><issn>0090-9556</issn><eissn>1521-009X</eissn><abstract>Tienilic acid (TA) is selectively oxidized at the C-5 position of the thiophene ring by the human liver enzyme cytochrome P450 2C9 (CYP2C9). This oxidation is mediated by the proximal positioning of the thiophene over the heme iron, which is proposed to be coordinated by an interaction of the TA carboxylic acid to a cationic binding pocket in the enzyme active site. In this study, we investigated how chemical modification of TA influences the bioactivation by CYP2C9. For this investigation, nine analogs of TA were chosen with substitutions on either side of the molecule. We tested three parameters, including CYP2C9 inhibition, metabolic profiling, and in silico docking. Of the 10 compounds tested, only two (TA and a noncarboxyl analog) resulted in competitive and time-dependent inhibition of CYP2C9. Metabolic profiling revealed a trend in which substitution of the carboxylate with nonionizable functional groups resulted in metabolic switching from oxidation of the aromatic ring to dealkylation reactions at the opposite side of the structure. The in silico modeling predicted an opposite binding orientation to that of TA for many analogs, including the 3-thenoyl regio-isomer analog, which contradicts previous models. Together these data show that disrupting interactions with the cationic binding pocket of CYP2C9 will impact the sites of metabolism and inhibition of the enzyme.</abstract><cop>United States</cop><pmid>25187484</pmid><doi>10.1124/dmd.114.059022</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-9556 |
ispartof | Drug metabolism and disposition, 2014-11, Vol.42 (11), p.1955-1963 |
issn | 0090-9556 1521-009X |
language | eng |
recordid | cdi_proquest_miscellaneous_1694971537 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Cations Computer Simulation Cytochrome P-450 CYP2C9 - metabolism Diuretics - metabolism Diuretics - pharmacokinetics Humans In Vitro Techniques Substrate Specificity Ticrynafen - metabolism Ticrynafen - pharmacokinetics Uricosuric Agents - metabolism Uricosuric Agents - pharmacokinetics |
title | Mechanistic studies of the cationic binding pocket of CYP2C9 in vitro and in silico: metabolism of nonionizable analogs of tienilic acid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20studies%20of%20the%20cationic%20binding%20pocket%20of%20CYP2C9%20in%20vitro%20and%20in%20silico:%20metabolism%20of%20nonionizable%20analogs%20of%20tienilic%20acid&rft.jtitle=Drug%20metabolism%20and%20disposition&rft.au=Tay,%20Suzanne&rft.date=2014-11&rft.volume=42&rft.issue=11&rft.spage=1955&rft.epage=1963&rft.pages=1955-1963&rft.issn=0090-9556&rft.eissn=1521-009X&rft_id=info:doi/10.1124/dmd.114.059022&rft_dat=%3Cproquest_cross%3E1694971537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1586094078&rft_id=info:pmid/25187484&rfr_iscdi=true |