Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies
The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approa...
Gespeichert in:
Veröffentlicht in: | Advanced drug delivery reviews 2015-04, Vol.84, p.1-29 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Advanced drug delivery reviews |
container_volume | 84 |
creator | Fernandez-Yague, Marc A. Abbah, Sunny Akogwu McNamara, Laoise Zeugolis, Dimitrios I. Pandit, Abhay Biggs, Manus J. |
description | The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approaches that focus on repair and reconstitution of tissue structure and function through drug release, receptor recognition, environmental responsiveness and tuned biodegradability are required.
Traditional orthopedic materials lack biomimicry, and mismatches in tissue morphology, or chemical and mechanical properties ultimately accelerate device failure. Multiple stimuli have been proposed as principal contributors or mediators of cell activity and bone tissue formation, including physical (substrate topography, stiffness, shear stress and electrical forces) and biochemical factors (growth factors, genes or proteins). However, optimal solutions to bone regeneration remain elusive. This review will focus on biological and physicomechanical considerations currently being explored in bone tissue engineering.
Different types of scaffolds (porous matrix, nano-fiber mesh, hydrogels and microspheres) are used to deliver bioactive molecules. This can be combined with a number of physicomechanical strategies to enhance treatment of various bone tissue defects and diseases. [Display omitted] |
doi_str_mv | 10.1016/j.addr.2014.09.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1694963675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169409X14002038</els_id><sourcerecordid>1694963675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-fcb080514719bb563ccb31ced4aae118a14ca380fffe05e74a9efbf95bcbc4993</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVJabZp_0AOQcdc7Eq2_KHSSxr6EQj00kBuQhqPvbPY0lbyFvLvq-2mOfY0zPDMC-_D2KUUpRSy_bAr7TDEshJSlUKXQjSv2Eb2XVX0lVZnbJMhXSihH8_Z25R2Qsiqa8Ubdl41Vd3Wotow-kxhoQVXAm73-xgsbDFx8twFj3yllA7I0U_kESP56SO_8ytO0a554Y7CHCYCO3PrB77fPiWCsCBsrf97TWsmcSJM79jr0c4J3z_PC_bw9cvP2-_F_Y9vd7c39wWorlmLEZzoRSNVJ7VzTVsDuFoCDspalLK3UoGtezGOI4oGO2U1jm7UjQMHSuv6gl2fcnOZXwdMq1koAc6z9RgOyWQnSrd12zUZrU4oxJBSxNHsIy02PhkpzFGx2ZmjYnNUbIQ2WXF-unrOP7gFh5eXf04z8OkEYG75mzCaBIQ-V6CIsJoh0P_y_wDBAJBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1694963675</pqid></control><display><type>article</type><title>Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Fernandez-Yague, Marc A. ; Abbah, Sunny Akogwu ; McNamara, Laoise ; Zeugolis, Dimitrios I. ; Pandit, Abhay ; Biggs, Manus J.</creator><creatorcontrib>Fernandez-Yague, Marc A. ; Abbah, Sunny Akogwu ; McNamara, Laoise ; Zeugolis, Dimitrios I. ; Pandit, Abhay ; Biggs, Manus J.</creatorcontrib><description>The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approaches that focus on repair and reconstitution of tissue structure and function through drug release, receptor recognition, environmental responsiveness and tuned biodegradability are required.
Traditional orthopedic materials lack biomimicry, and mismatches in tissue morphology, or chemical and mechanical properties ultimately accelerate device failure. Multiple stimuli have been proposed as principal contributors or mediators of cell activity and bone tissue formation, including physical (substrate topography, stiffness, shear stress and electrical forces) and biochemical factors (growth factors, genes or proteins). However, optimal solutions to bone regeneration remain elusive. This review will focus on biological and physicomechanical considerations currently being explored in bone tissue engineering.
Different types of scaffolds (porous matrix, nano-fiber mesh, hydrogels and microspheres) are used to deliver bioactive molecules. This can be combined with a number of physicomechanical strategies to enhance treatment of various bone tissue defects and diseases. [Display omitted]</description><identifier>ISSN: 0169-409X</identifier><identifier>EISSN: 1872-8294</identifier><identifier>DOI: 10.1016/j.addr.2014.09.005</identifier><identifier>PMID: 25236302</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biomimetic Materials - therapeutic use ; Biomimetic scaffolds ; Biomimetics - methods ; Bone and Bones - injuries ; Bone and Bones - surgery ; Bone regeneration ; Cell delivery ; Drug delivery ; Gene delivery ; Growth factors ; Humans ; Osteoconductive ; Osteoinductive ; Tissue Engineering - methods</subject><ispartof>Advanced drug delivery reviews, 2015-04, Vol.84, p.1-29</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-fcb080514719bb563ccb31ced4aae118a14ca380fffe05e74a9efbf95bcbc4993</citedby><cites>FETCH-LOGICAL-c475t-fcb080514719bb563ccb31ced4aae118a14ca380fffe05e74a9efbf95bcbc4993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.addr.2014.09.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25236302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandez-Yague, Marc A.</creatorcontrib><creatorcontrib>Abbah, Sunny Akogwu</creatorcontrib><creatorcontrib>McNamara, Laoise</creatorcontrib><creatorcontrib>Zeugolis, Dimitrios I.</creatorcontrib><creatorcontrib>Pandit, Abhay</creatorcontrib><creatorcontrib>Biggs, Manus J.</creatorcontrib><title>Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies</title><title>Advanced drug delivery reviews</title><addtitle>Adv Drug Deliv Rev</addtitle><description>The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approaches that focus on repair and reconstitution of tissue structure and function through drug release, receptor recognition, environmental responsiveness and tuned biodegradability are required.
Traditional orthopedic materials lack biomimicry, and mismatches in tissue morphology, or chemical and mechanical properties ultimately accelerate device failure. Multiple stimuli have been proposed as principal contributors or mediators of cell activity and bone tissue formation, including physical (substrate topography, stiffness, shear stress and electrical forces) and biochemical factors (growth factors, genes or proteins). However, optimal solutions to bone regeneration remain elusive. This review will focus on biological and physicomechanical considerations currently being explored in bone tissue engineering.
Different types of scaffolds (porous matrix, nano-fiber mesh, hydrogels and microspheres) are used to deliver bioactive molecules. This can be combined with a number of physicomechanical strategies to enhance treatment of various bone tissue defects and diseases. [Display omitted]</description><subject>Biomimetic Materials - therapeutic use</subject><subject>Biomimetic scaffolds</subject><subject>Biomimetics - methods</subject><subject>Bone and Bones - injuries</subject><subject>Bone and Bones - surgery</subject><subject>Bone regeneration</subject><subject>Cell delivery</subject><subject>Drug delivery</subject><subject>Gene delivery</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Osteoconductive</subject><subject>Osteoinductive</subject><subject>Tissue Engineering - methods</subject><issn>0169-409X</issn><issn>1872-8294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1r3DAQhkVJabZp_0AOQcdc7Eq2_KHSSxr6EQj00kBuQhqPvbPY0lbyFvLvq-2mOfY0zPDMC-_D2KUUpRSy_bAr7TDEshJSlUKXQjSv2Eb2XVX0lVZnbJMhXSihH8_Z25R2Qsiqa8Ubdl41Vd3Wotow-kxhoQVXAm73-xgsbDFx8twFj3yllA7I0U_kESP56SO_8ytO0a554Y7CHCYCO3PrB77fPiWCsCBsrf97TWsmcSJM79jr0c4J3z_PC_bw9cvP2-_F_Y9vd7c39wWorlmLEZzoRSNVJ7VzTVsDuFoCDspalLK3UoGtezGOI4oGO2U1jm7UjQMHSuv6gl2fcnOZXwdMq1koAc6z9RgOyWQnSrd12zUZrU4oxJBSxNHsIy02PhkpzFGx2ZmjYnNUbIQ2WXF-unrOP7gFh5eXf04z8OkEYG75mzCaBIQ-V6CIsJoh0P_y_wDBAJBY</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Fernandez-Yague, Marc A.</creator><creator>Abbah, Sunny Akogwu</creator><creator>McNamara, Laoise</creator><creator>Zeugolis, Dimitrios I.</creator><creator>Pandit, Abhay</creator><creator>Biggs, Manus J.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150401</creationdate><title>Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies</title><author>Fernandez-Yague, Marc A. ; Abbah, Sunny Akogwu ; McNamara, Laoise ; Zeugolis, Dimitrios I. ; Pandit, Abhay ; Biggs, Manus J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-fcb080514719bb563ccb31ced4aae118a14ca380fffe05e74a9efbf95bcbc4993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biomimetic Materials - therapeutic use</topic><topic>Biomimetic scaffolds</topic><topic>Biomimetics - methods</topic><topic>Bone and Bones - injuries</topic><topic>Bone and Bones - surgery</topic><topic>Bone regeneration</topic><topic>Cell delivery</topic><topic>Drug delivery</topic><topic>Gene delivery</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Osteoconductive</topic><topic>Osteoinductive</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandez-Yague, Marc A.</creatorcontrib><creatorcontrib>Abbah, Sunny Akogwu</creatorcontrib><creatorcontrib>McNamara, Laoise</creatorcontrib><creatorcontrib>Zeugolis, Dimitrios I.</creatorcontrib><creatorcontrib>Pandit, Abhay</creatorcontrib><creatorcontrib>Biggs, Manus J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced drug delivery reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandez-Yague, Marc A.</au><au>Abbah, Sunny Akogwu</au><au>McNamara, Laoise</au><au>Zeugolis, Dimitrios I.</au><au>Pandit, Abhay</au><au>Biggs, Manus J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies</atitle><jtitle>Advanced drug delivery reviews</jtitle><addtitle>Adv Drug Deliv Rev</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>84</volume><spage>1</spage><epage>29</epage><pages>1-29</pages><issn>0169-409X</issn><eissn>1872-8294</eissn><abstract>The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approaches that focus on repair and reconstitution of tissue structure and function through drug release, receptor recognition, environmental responsiveness and tuned biodegradability are required.
Traditional orthopedic materials lack biomimicry, and mismatches in tissue morphology, or chemical and mechanical properties ultimately accelerate device failure. Multiple stimuli have been proposed as principal contributors or mediators of cell activity and bone tissue formation, including physical (substrate topography, stiffness, shear stress and electrical forces) and biochemical factors (growth factors, genes or proteins). However, optimal solutions to bone regeneration remain elusive. This review will focus on biological and physicomechanical considerations currently being explored in bone tissue engineering.
Different types of scaffolds (porous matrix, nano-fiber mesh, hydrogels and microspheres) are used to deliver bioactive molecules. This can be combined with a number of physicomechanical strategies to enhance treatment of various bone tissue defects and diseases. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>25236302</pmid><doi>10.1016/j.addr.2014.09.005</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-409X |
ispartof | Advanced drug delivery reviews, 2015-04, Vol.84, p.1-29 |
issn | 0169-409X 1872-8294 |
language | eng |
recordid | cdi_proquest_miscellaneous_1694963675 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Biomimetic Materials - therapeutic use Biomimetic scaffolds Biomimetics - methods Bone and Bones - injuries Bone and Bones - surgery Bone regeneration Cell delivery Drug delivery Gene delivery Growth factors Humans Osteoconductive Osteoinductive Tissue Engineering - methods |
title | Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A56%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20approaches%20in%20bone%20tissue%20engineering:%20Integrating%20biological%20and%20physicomechanical%20strategies&rft.jtitle=Advanced%20drug%20delivery%20reviews&rft.au=Fernandez-Yague,%20Marc%20A.&rft.date=2015-04-01&rft.volume=84&rft.spage=1&rft.epage=29&rft.pages=1-29&rft.issn=0169-409X&rft.eissn=1872-8294&rft_id=info:doi/10.1016/j.addr.2014.09.005&rft_dat=%3Cproquest_cross%3E1694963675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1694963675&rft_id=info:pmid/25236302&rft_els_id=S0169409X14002038&rfr_iscdi=true |