Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies

The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced drug delivery reviews 2015-04, Vol.84, p.1-29
Hauptverfasser: Fernandez-Yague, Marc A., Abbah, Sunny Akogwu, McNamara, Laoise, Zeugolis, Dimitrios I., Pandit, Abhay, Biggs, Manus J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue
container_start_page 1
container_title Advanced drug delivery reviews
container_volume 84
creator Fernandez-Yague, Marc A.
Abbah, Sunny Akogwu
McNamara, Laoise
Zeugolis, Dimitrios I.
Pandit, Abhay
Biggs, Manus J.
description The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approaches that focus on repair and reconstitution of tissue structure and function through drug release, receptor recognition, environmental responsiveness and tuned biodegradability are required. Traditional orthopedic materials lack biomimicry, and mismatches in tissue morphology, or chemical and mechanical properties ultimately accelerate device failure. Multiple stimuli have been proposed as principal contributors or mediators of cell activity and bone tissue formation, including physical (substrate topography, stiffness, shear stress and electrical forces) and biochemical factors (growth factors, genes or proteins). However, optimal solutions to bone regeneration remain elusive. This review will focus on biological and physicomechanical considerations currently being explored in bone tissue engineering. Different types of scaffolds (porous matrix, nano-fiber mesh, hydrogels and microspheres) are used to deliver bioactive molecules. This can be combined with a number of physicomechanical strategies to enhance treatment of various bone tissue defects and diseases. [Display omitted]
doi_str_mv 10.1016/j.addr.2014.09.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1694963675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169409X14002038</els_id><sourcerecordid>1694963675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-fcb080514719bb563ccb31ced4aae118a14ca380fffe05e74a9efbf95bcbc4993</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVJabZp_0AOQcdc7Eq2_KHSSxr6EQj00kBuQhqPvbPY0lbyFvLvq-2mOfY0zPDMC-_D2KUUpRSy_bAr7TDEshJSlUKXQjSv2Eb2XVX0lVZnbJMhXSihH8_Z25R2Qsiqa8Ubdl41Vd3Wotow-kxhoQVXAm73-xgsbDFx8twFj3yllA7I0U_kESP56SO_8ytO0a554Y7CHCYCO3PrB77fPiWCsCBsrf97TWsmcSJM79jr0c4J3z_PC_bw9cvP2-_F_Y9vd7c39wWorlmLEZzoRSNVJ7VzTVsDuFoCDspalLK3UoGtezGOI4oGO2U1jm7UjQMHSuv6gl2fcnOZXwdMq1koAc6z9RgOyWQnSrd12zUZrU4oxJBSxNHsIy02PhkpzFGx2ZmjYnNUbIQ2WXF-unrOP7gFh5eXf04z8OkEYG75mzCaBIQ-V6CIsJoh0P_y_wDBAJBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1694963675</pqid></control><display><type>article</type><title>Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Fernandez-Yague, Marc A. ; Abbah, Sunny Akogwu ; McNamara, Laoise ; Zeugolis, Dimitrios I. ; Pandit, Abhay ; Biggs, Manus J.</creator><creatorcontrib>Fernandez-Yague, Marc A. ; Abbah, Sunny Akogwu ; McNamara, Laoise ; Zeugolis, Dimitrios I. ; Pandit, Abhay ; Biggs, Manus J.</creatorcontrib><description>The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approaches that focus on repair and reconstitution of tissue structure and function through drug release, receptor recognition, environmental responsiveness and tuned biodegradability are required. Traditional orthopedic materials lack biomimicry, and mismatches in tissue morphology, or chemical and mechanical properties ultimately accelerate device failure. Multiple stimuli have been proposed as principal contributors or mediators of cell activity and bone tissue formation, including physical (substrate topography, stiffness, shear stress and electrical forces) and biochemical factors (growth factors, genes or proteins). However, optimal solutions to bone regeneration remain elusive. This review will focus on biological and physicomechanical considerations currently being explored in bone tissue engineering. Different types of scaffolds (porous matrix, nano-fiber mesh, hydrogels and microspheres) are used to deliver bioactive molecules. This can be combined with a number of physicomechanical strategies to enhance treatment of various bone tissue defects and diseases. [Display omitted]</description><identifier>ISSN: 0169-409X</identifier><identifier>EISSN: 1872-8294</identifier><identifier>DOI: 10.1016/j.addr.2014.09.005</identifier><identifier>PMID: 25236302</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biomimetic Materials - therapeutic use ; Biomimetic scaffolds ; Biomimetics - methods ; Bone and Bones - injuries ; Bone and Bones - surgery ; Bone regeneration ; Cell delivery ; Drug delivery ; Gene delivery ; Growth factors ; Humans ; Osteoconductive ; Osteoinductive ; Tissue Engineering - methods</subject><ispartof>Advanced drug delivery reviews, 2015-04, Vol.84, p.1-29</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-fcb080514719bb563ccb31ced4aae118a14ca380fffe05e74a9efbf95bcbc4993</citedby><cites>FETCH-LOGICAL-c475t-fcb080514719bb563ccb31ced4aae118a14ca380fffe05e74a9efbf95bcbc4993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.addr.2014.09.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25236302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandez-Yague, Marc A.</creatorcontrib><creatorcontrib>Abbah, Sunny Akogwu</creatorcontrib><creatorcontrib>McNamara, Laoise</creatorcontrib><creatorcontrib>Zeugolis, Dimitrios I.</creatorcontrib><creatorcontrib>Pandit, Abhay</creatorcontrib><creatorcontrib>Biggs, Manus J.</creatorcontrib><title>Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies</title><title>Advanced drug delivery reviews</title><addtitle>Adv Drug Deliv Rev</addtitle><description>The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approaches that focus on repair and reconstitution of tissue structure and function through drug release, receptor recognition, environmental responsiveness and tuned biodegradability are required. Traditional orthopedic materials lack biomimicry, and mismatches in tissue morphology, or chemical and mechanical properties ultimately accelerate device failure. Multiple stimuli have been proposed as principal contributors or mediators of cell activity and bone tissue formation, including physical (substrate topography, stiffness, shear stress and electrical forces) and biochemical factors (growth factors, genes or proteins). However, optimal solutions to bone regeneration remain elusive. This review will focus on biological and physicomechanical considerations currently being explored in bone tissue engineering. Different types of scaffolds (porous matrix, nano-fiber mesh, hydrogels and microspheres) are used to deliver bioactive molecules. This can be combined with a number of physicomechanical strategies to enhance treatment of various bone tissue defects and diseases. [Display omitted]</description><subject>Biomimetic Materials - therapeutic use</subject><subject>Biomimetic scaffolds</subject><subject>Biomimetics - methods</subject><subject>Bone and Bones - injuries</subject><subject>Bone and Bones - surgery</subject><subject>Bone regeneration</subject><subject>Cell delivery</subject><subject>Drug delivery</subject><subject>Gene delivery</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Osteoconductive</subject><subject>Osteoinductive</subject><subject>Tissue Engineering - methods</subject><issn>0169-409X</issn><issn>1872-8294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1r3DAQhkVJabZp_0AOQcdc7Eq2_KHSSxr6EQj00kBuQhqPvbPY0lbyFvLvq-2mOfY0zPDMC-_D2KUUpRSy_bAr7TDEshJSlUKXQjSv2Eb2XVX0lVZnbJMhXSihH8_Z25R2Qsiqa8Ubdl41Vd3Wotow-kxhoQVXAm73-xgsbDFx8twFj3yllA7I0U_kESP56SO_8ytO0a554Y7CHCYCO3PrB77fPiWCsCBsrf97TWsmcSJM79jr0c4J3z_PC_bw9cvP2-_F_Y9vd7c39wWorlmLEZzoRSNVJ7VzTVsDuFoCDspalLK3UoGtezGOI4oGO2U1jm7UjQMHSuv6gl2fcnOZXwdMq1koAc6z9RgOyWQnSrd12zUZrU4oxJBSxNHsIy02PhkpzFGx2ZmjYnNUbIQ2WXF-unrOP7gFh5eXf04z8OkEYG75mzCaBIQ-V6CIsJoh0P_y_wDBAJBY</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Fernandez-Yague, Marc A.</creator><creator>Abbah, Sunny Akogwu</creator><creator>McNamara, Laoise</creator><creator>Zeugolis, Dimitrios I.</creator><creator>Pandit, Abhay</creator><creator>Biggs, Manus J.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150401</creationdate><title>Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies</title><author>Fernandez-Yague, Marc A. ; Abbah, Sunny Akogwu ; McNamara, Laoise ; Zeugolis, Dimitrios I. ; Pandit, Abhay ; Biggs, Manus J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-fcb080514719bb563ccb31ced4aae118a14ca380fffe05e74a9efbf95bcbc4993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biomimetic Materials - therapeutic use</topic><topic>Biomimetic scaffolds</topic><topic>Biomimetics - methods</topic><topic>Bone and Bones - injuries</topic><topic>Bone and Bones - surgery</topic><topic>Bone regeneration</topic><topic>Cell delivery</topic><topic>Drug delivery</topic><topic>Gene delivery</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Osteoconductive</topic><topic>Osteoinductive</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandez-Yague, Marc A.</creatorcontrib><creatorcontrib>Abbah, Sunny Akogwu</creatorcontrib><creatorcontrib>McNamara, Laoise</creatorcontrib><creatorcontrib>Zeugolis, Dimitrios I.</creatorcontrib><creatorcontrib>Pandit, Abhay</creatorcontrib><creatorcontrib>Biggs, Manus J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced drug delivery reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandez-Yague, Marc A.</au><au>Abbah, Sunny Akogwu</au><au>McNamara, Laoise</au><au>Zeugolis, Dimitrios I.</au><au>Pandit, Abhay</au><au>Biggs, Manus J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies</atitle><jtitle>Advanced drug delivery reviews</jtitle><addtitle>Adv Drug Deliv Rev</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>84</volume><spage>1</spage><epage>29</epage><pages>1-29</pages><issn>0169-409X</issn><eissn>1872-8294</eissn><abstract>The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approaches that focus on repair and reconstitution of tissue structure and function through drug release, receptor recognition, environmental responsiveness and tuned biodegradability are required. Traditional orthopedic materials lack biomimicry, and mismatches in tissue morphology, or chemical and mechanical properties ultimately accelerate device failure. Multiple stimuli have been proposed as principal contributors or mediators of cell activity and bone tissue formation, including physical (substrate topography, stiffness, shear stress and electrical forces) and biochemical factors (growth factors, genes or proteins). However, optimal solutions to bone regeneration remain elusive. This review will focus on biological and physicomechanical considerations currently being explored in bone tissue engineering. Different types of scaffolds (porous matrix, nano-fiber mesh, hydrogels and microspheres) are used to deliver bioactive molecules. This can be combined with a number of physicomechanical strategies to enhance treatment of various bone tissue defects and diseases. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>25236302</pmid><doi>10.1016/j.addr.2014.09.005</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-409X
ispartof Advanced drug delivery reviews, 2015-04, Vol.84, p.1-29
issn 0169-409X
1872-8294
language eng
recordid cdi_proquest_miscellaneous_1694963675
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Biomimetic Materials - therapeutic use
Biomimetic scaffolds
Biomimetics - methods
Bone and Bones - injuries
Bone and Bones - surgery
Bone regeneration
Cell delivery
Drug delivery
Gene delivery
Growth factors
Humans
Osteoconductive
Osteoinductive
Tissue Engineering - methods
title Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A56%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20approaches%20in%20bone%20tissue%20engineering:%20Integrating%20biological%20and%20physicomechanical%20strategies&rft.jtitle=Advanced%20drug%20delivery%20reviews&rft.au=Fernandez-Yague,%20Marc%20A.&rft.date=2015-04-01&rft.volume=84&rft.spage=1&rft.epage=29&rft.pages=1-29&rft.issn=0169-409X&rft.eissn=1872-8294&rft_id=info:doi/10.1016/j.addr.2014.09.005&rft_dat=%3Cproquest_cross%3E1694963675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1694963675&rft_id=info:pmid/25236302&rft_els_id=S0169409X14002038&rfr_iscdi=true