Introduction of chemically labile substructures into Arabidopsis lignin through the use of LigD, the Cα‐dehydrogenase from Sphingobium sp. strain SYK‐6

Bacteria‐derived enzymes that can modify specific lignin substructures are potential targets to engineer plants for better biomass processability. The Gram‐negative bacterium Sphingobium sp. SYK‐6 possesses a Cα‐dehydrogenase (LigD) enzyme that has been shown to oxidize the α‐hydroxy functionalities...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2015-08, Vol.13 (6), p.821-832
Hauptverfasser: Tsuji, Yukiko, Vanholme, Ruben, Tobimatsu, Yuki, Ishikawa, Yasuyuki, Foster, Clifton E, Kamimura, Naofumi, Hishiyama, Shojiro, Hashimoto, Saki, Shino, Amiu, Hara, Hirofumi, Sato‐Izawa, Kanna, Oyarce, Paula, Goeminne, Geert, Morreel, Kris, Kikuchi, Jun, Takano, Toshiyuki, Fukuda, Masao, Katayama, Yoshihiro, Boerjan, Wout, Ralph, John, Masai, Eiji, Kajita, Shinya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 832
container_issue 6
container_start_page 821
container_title Plant biotechnology journal
container_volume 13
creator Tsuji, Yukiko
Vanholme, Ruben
Tobimatsu, Yuki
Ishikawa, Yasuyuki
Foster, Clifton E
Kamimura, Naofumi
Hishiyama, Shojiro
Hashimoto, Saki
Shino, Amiu
Hara, Hirofumi
Sato‐Izawa, Kanna
Oyarce, Paula
Goeminne, Geert
Morreel, Kris
Kikuchi, Jun
Takano, Toshiyuki
Fukuda, Masao
Katayama, Yoshihiro
Boerjan, Wout
Ralph, John
Masai, Eiji
Kajita, Shinya
description Bacteria‐derived enzymes that can modify specific lignin substructures are potential targets to engineer plants for better biomass processability. The Gram‐negative bacterium Sphingobium sp. SYK‐6 possesses a Cα‐dehydrogenase (LigD) enzyme that has been shown to oxidize the α‐hydroxy functionalities in β–O–4‐linked dimers into α‐keto analogues that are more chemically labile. Here, we show that recombinant LigD can oxidize an even wider range of β–O–4‐linked dimers and oligomers, including the genuine dilignols, guaiacylglycerol‐β‐coniferyl alcohol ether and syringylglycerol‐β‐sinapyl alcohol ether. We explored the possibility of using LigD for biosynthetically engineering lignin by expressing the codon‐optimized ligD gene in Arabidopsis thaliana. The ligD cDNA, with or without a signal peptide for apoplast targeting, has been successfully expressed, and LigD activity could be detected in the extracts of the transgenic plants. UPLC‐MS/MS‐based metabolite profiling indicated that levels of oxidized guaiacyl (G) β–O–4‐coupled dilignols and analogues were significantly elevated in the LigD transgenic plants regardless of the signal peptide attachment to LigD. In parallel, 2D NMR analysis revealed a 2.1‐ to 2.8‐fold increased level of G‐type α‐keto‐β–O–4 linkages in cellulolytic enzyme lignins isolated from the stem cell walls of the LigD transgenic plants, indicating that the transformation was capable of altering lignin structure in the desired manner.
doi_str_mv 10.1111/pbi.12316
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1694963058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1694963058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3976-6d8691ed85fd9439225bbe7d8c87c58a99e8e2cbb9eb6d1f60fb4b4c50400bc23</originalsourceid><addsrcrecordid>eNp10c9uFCEABvCJsbG1evAFlMSLJt0tMAMzHOtqdeMmmqw9eCL8mxmaGRhhiNmbj-AD-BK-iA_RJ5F22x5M5AKBHx8kX1E8Q3CJ8jidpF0iXCL6oDhCFa0XNSX44f26qg6LxzFeQogRJfRRcYgJaSCpyqPi19rNweukZusd8C1QvRmtEsOwA4OQdjAgJhnnkEUKJgLrZg_OQj7Sfoo2gsF2zjow98Gnrs-zASma66iN7d6e3Gys_vy--vFTm36ng--MExm0wY9gO_XWdV7aNII4LUF-SOSw7deP2dMnxUErhmie3s7HxcX5uy-rD4vNp_fr1dlmoUpW0wXVDWXI6Ia0mlUlw5hIaWrdqKZWpBGMmcZgJSUzkmrUUtjKSlaKwApCqXB5XLza507Bf0smzny0UZlhEM74FDmirGK0hKTJ9OU_9NKn4PLveAlpTRuUYVav90oFH2MwLZ-CHUXYcQT5dWU8V8ZvKsv2-W1ikqPR9_KuowxO9-B7bmP3_yT--c36LvLF_kYrPBddsJFfbDFEFEKE65LB8i-sea3f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067681963</pqid></control><display><type>article</type><title>Introduction of chemically labile substructures into Arabidopsis lignin through the use of LigD, the Cα‐dehydrogenase from Sphingobium sp. strain SYK‐6</title><source>Wiley Online Library Open Access</source><creator>Tsuji, Yukiko ; Vanholme, Ruben ; Tobimatsu, Yuki ; Ishikawa, Yasuyuki ; Foster, Clifton E ; Kamimura, Naofumi ; Hishiyama, Shojiro ; Hashimoto, Saki ; Shino, Amiu ; Hara, Hirofumi ; Sato‐Izawa, Kanna ; Oyarce, Paula ; Goeminne, Geert ; Morreel, Kris ; Kikuchi, Jun ; Takano, Toshiyuki ; Fukuda, Masao ; Katayama, Yoshihiro ; Boerjan, Wout ; Ralph, John ; Masai, Eiji ; Kajita, Shinya</creator><creatorcontrib>Tsuji, Yukiko ; Vanholme, Ruben ; Tobimatsu, Yuki ; Ishikawa, Yasuyuki ; Foster, Clifton E ; Kamimura, Naofumi ; Hishiyama, Shojiro ; Hashimoto, Saki ; Shino, Amiu ; Hara, Hirofumi ; Sato‐Izawa, Kanna ; Oyarce, Paula ; Goeminne, Geert ; Morreel, Kris ; Kikuchi, Jun ; Takano, Toshiyuki ; Fukuda, Masao ; Katayama, Yoshihiro ; Boerjan, Wout ; Ralph, John ; Masai, Eiji ; Kajita, Shinya</creatorcontrib><description>Bacteria‐derived enzymes that can modify specific lignin substructures are potential targets to engineer plants for better biomass processability. The Gram‐negative bacterium Sphingobium sp. SYK‐6 possesses a Cα‐dehydrogenase (LigD) enzyme that has been shown to oxidize the α‐hydroxy functionalities in β–O–4‐linked dimers into α‐keto analogues that are more chemically labile. Here, we show that recombinant LigD can oxidize an even wider range of β–O–4‐linked dimers and oligomers, including the genuine dilignols, guaiacylglycerol‐β‐coniferyl alcohol ether and syringylglycerol‐β‐sinapyl alcohol ether. We explored the possibility of using LigD for biosynthetically engineering lignin by expressing the codon‐optimized ligD gene in Arabidopsis thaliana. The ligD cDNA, with or without a signal peptide for apoplast targeting, has been successfully expressed, and LigD activity could be detected in the extracts of the transgenic plants. UPLC‐MS/MS‐based metabolite profiling indicated that levels of oxidized guaiacyl (G) β–O–4‐coupled dilignols and analogues were significantly elevated in the LigD transgenic plants regardless of the signal peptide attachment to LigD. In parallel, 2D NMR analysis revealed a 2.1‐ to 2.8‐fold increased level of G‐type α‐keto‐β–O–4 linkages in cellulolytic enzyme lignins isolated from the stem cell walls of the LigD transgenic plants, indicating that the transformation was capable of altering lignin structure in the desired manner.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12316</identifier><identifier>PMID: 25580543</identifier><language>eng</language><publisher>England: Blackwell Pub</publisher><subject>Alcohol ; alcohols ; Apoplast ; Arabidopsis - enzymology ; Arabidopsis - metabolism ; Arabidopsis thaliana ; Bacteria ; biomass ; Biosynthesis ; Cell Wall - enzymology ; Cell Wall - metabolism ; Cell walls ; complementary DNA ; Cα‐dehydrogenase ; Dehydrogenase ; Dehydrogenases ; Dimerization ; Dimers ; engineering ; enzymes ; Ethanol ; Food ; genes ; Genetic engineering ; Genetic transformation ; Gram-negative bacteria ; Lignin ; Lignin - metabolism ; lignin biosynthesis ; Metabolites ; NMR ; Nuclear magnetic resonance ; nuclear magnetic resonance spectroscopy ; Oxidoreductases - metabolism ; Phenols - metabolism ; Plant extracts ; signal peptide ; Sinapyl alcohol ; Sphingobium ; Sphingobium sp. SYK‐6 ; Sphingomonadaceae - enzymology ; Sphingomonas ; Stem cells ; Syk protein ; Transgenic plants ; Two dimensional analysis</subject><ispartof>Plant biotechnology journal, 2015-08, Vol.13 (6), p.821-832</ispartof><rights>2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley &amp; Sons Ltd</rights><rights>2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2015. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3976-6d8691ed85fd9439225bbe7d8c87c58a99e8e2cbb9eb6d1f60fb4b4c50400bc23</citedby><cites>FETCH-LOGICAL-c3976-6d8691ed85fd9439225bbe7d8c87c58a99e8e2cbb9eb6d1f60fb4b4c50400bc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12316$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12316$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12316$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25580543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsuji, Yukiko</creatorcontrib><creatorcontrib>Vanholme, Ruben</creatorcontrib><creatorcontrib>Tobimatsu, Yuki</creatorcontrib><creatorcontrib>Ishikawa, Yasuyuki</creatorcontrib><creatorcontrib>Foster, Clifton E</creatorcontrib><creatorcontrib>Kamimura, Naofumi</creatorcontrib><creatorcontrib>Hishiyama, Shojiro</creatorcontrib><creatorcontrib>Hashimoto, Saki</creatorcontrib><creatorcontrib>Shino, Amiu</creatorcontrib><creatorcontrib>Hara, Hirofumi</creatorcontrib><creatorcontrib>Sato‐Izawa, Kanna</creatorcontrib><creatorcontrib>Oyarce, Paula</creatorcontrib><creatorcontrib>Goeminne, Geert</creatorcontrib><creatorcontrib>Morreel, Kris</creatorcontrib><creatorcontrib>Kikuchi, Jun</creatorcontrib><creatorcontrib>Takano, Toshiyuki</creatorcontrib><creatorcontrib>Fukuda, Masao</creatorcontrib><creatorcontrib>Katayama, Yoshihiro</creatorcontrib><creatorcontrib>Boerjan, Wout</creatorcontrib><creatorcontrib>Ralph, John</creatorcontrib><creatorcontrib>Masai, Eiji</creatorcontrib><creatorcontrib>Kajita, Shinya</creatorcontrib><title>Introduction of chemically labile substructures into Arabidopsis lignin through the use of LigD, the Cα‐dehydrogenase from Sphingobium sp. strain SYK‐6</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Bacteria‐derived enzymes that can modify specific lignin substructures are potential targets to engineer plants for better biomass processability. The Gram‐negative bacterium Sphingobium sp. SYK‐6 possesses a Cα‐dehydrogenase (LigD) enzyme that has been shown to oxidize the α‐hydroxy functionalities in β–O–4‐linked dimers into α‐keto analogues that are more chemically labile. Here, we show that recombinant LigD can oxidize an even wider range of β–O–4‐linked dimers and oligomers, including the genuine dilignols, guaiacylglycerol‐β‐coniferyl alcohol ether and syringylglycerol‐β‐sinapyl alcohol ether. We explored the possibility of using LigD for biosynthetically engineering lignin by expressing the codon‐optimized ligD gene in Arabidopsis thaliana. The ligD cDNA, with or without a signal peptide for apoplast targeting, has been successfully expressed, and LigD activity could be detected in the extracts of the transgenic plants. UPLC‐MS/MS‐based metabolite profiling indicated that levels of oxidized guaiacyl (G) β–O–4‐coupled dilignols and analogues were significantly elevated in the LigD transgenic plants regardless of the signal peptide attachment to LigD. In parallel, 2D NMR analysis revealed a 2.1‐ to 2.8‐fold increased level of G‐type α‐keto‐β–O–4 linkages in cellulolytic enzyme lignins isolated from the stem cell walls of the LigD transgenic plants, indicating that the transformation was capable of altering lignin structure in the desired manner.</description><subject>Alcohol</subject><subject>alcohols</subject><subject>Apoplast</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Bacteria</subject><subject>biomass</subject><subject>Biosynthesis</subject><subject>Cell Wall - enzymology</subject><subject>Cell Wall - metabolism</subject><subject>Cell walls</subject><subject>complementary DNA</subject><subject>Cα‐dehydrogenase</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>engineering</subject><subject>enzymes</subject><subject>Ethanol</subject><subject>Food</subject><subject>genes</subject><subject>Genetic engineering</subject><subject>Genetic transformation</subject><subject>Gram-negative bacteria</subject><subject>Lignin</subject><subject>Lignin - metabolism</subject><subject>lignin biosynthesis</subject><subject>Metabolites</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Oxidoreductases - metabolism</subject><subject>Phenols - metabolism</subject><subject>Plant extracts</subject><subject>signal peptide</subject><subject>Sinapyl alcohol</subject><subject>Sphingobium</subject><subject>Sphingobium sp. SYK‐6</subject><subject>Sphingomonadaceae - enzymology</subject><subject>Sphingomonas</subject><subject>Stem cells</subject><subject>Syk protein</subject><subject>Transgenic plants</subject><subject>Two dimensional analysis</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10c9uFCEABvCJsbG1evAFlMSLJt0tMAMzHOtqdeMmmqw9eCL8mxmaGRhhiNmbj-AD-BK-iA_RJ5F22x5M5AKBHx8kX1E8Q3CJ8jidpF0iXCL6oDhCFa0XNSX44f26qg6LxzFeQogRJfRRcYgJaSCpyqPi19rNweukZusd8C1QvRmtEsOwA4OQdjAgJhnnkEUKJgLrZg_OQj7Sfoo2gsF2zjow98Gnrs-zASma66iN7d6e3Gys_vy--vFTm36ng--MExm0wY9gO_XWdV7aNII4LUF-SOSw7deP2dMnxUErhmie3s7HxcX5uy-rD4vNp_fr1dlmoUpW0wXVDWXI6Ia0mlUlw5hIaWrdqKZWpBGMmcZgJSUzkmrUUtjKSlaKwApCqXB5XLza507Bf0smzny0UZlhEM74FDmirGK0hKTJ9OU_9NKn4PLveAlpTRuUYVav90oFH2MwLZ-CHUXYcQT5dWU8V8ZvKsv2-W1ikqPR9_KuowxO9-B7bmP3_yT--c36LvLF_kYrPBddsJFfbDFEFEKE65LB8i-sea3f</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Tsuji, Yukiko</creator><creator>Vanholme, Ruben</creator><creator>Tobimatsu, Yuki</creator><creator>Ishikawa, Yasuyuki</creator><creator>Foster, Clifton E</creator><creator>Kamimura, Naofumi</creator><creator>Hishiyama, Shojiro</creator><creator>Hashimoto, Saki</creator><creator>Shino, Amiu</creator><creator>Hara, Hirofumi</creator><creator>Sato‐Izawa, Kanna</creator><creator>Oyarce, Paula</creator><creator>Goeminne, Geert</creator><creator>Morreel, Kris</creator><creator>Kikuchi, Jun</creator><creator>Takano, Toshiyuki</creator><creator>Fukuda, Masao</creator><creator>Katayama, Yoshihiro</creator><creator>Boerjan, Wout</creator><creator>Ralph, John</creator><creator>Masai, Eiji</creator><creator>Kajita, Shinya</creator><general>Blackwell Pub</general><general>John Wiley &amp; Sons, Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201508</creationdate><title>Introduction of chemically labile substructures into Arabidopsis lignin through the use of LigD, the Cα‐dehydrogenase from Sphingobium sp. strain SYK‐6</title><author>Tsuji, Yukiko ; Vanholme, Ruben ; Tobimatsu, Yuki ; Ishikawa, Yasuyuki ; Foster, Clifton E ; Kamimura, Naofumi ; Hishiyama, Shojiro ; Hashimoto, Saki ; Shino, Amiu ; Hara, Hirofumi ; Sato‐Izawa, Kanna ; Oyarce, Paula ; Goeminne, Geert ; Morreel, Kris ; Kikuchi, Jun ; Takano, Toshiyuki ; Fukuda, Masao ; Katayama, Yoshihiro ; Boerjan, Wout ; Ralph, John ; Masai, Eiji ; Kajita, Shinya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3976-6d8691ed85fd9439225bbe7d8c87c58a99e8e2cbb9eb6d1f60fb4b4c50400bc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alcohol</topic><topic>alcohols</topic><topic>Apoplast</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Bacteria</topic><topic>biomass</topic><topic>Biosynthesis</topic><topic>Cell Wall - enzymology</topic><topic>Cell Wall - metabolism</topic><topic>Cell walls</topic><topic>complementary DNA</topic><topic>Cα‐dehydrogenase</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>engineering</topic><topic>enzymes</topic><topic>Ethanol</topic><topic>Food</topic><topic>genes</topic><topic>Genetic engineering</topic><topic>Genetic transformation</topic><topic>Gram-negative bacteria</topic><topic>Lignin</topic><topic>Lignin - metabolism</topic><topic>lignin biosynthesis</topic><topic>Metabolites</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Oxidoreductases - metabolism</topic><topic>Phenols - metabolism</topic><topic>Plant extracts</topic><topic>signal peptide</topic><topic>Sinapyl alcohol</topic><topic>Sphingobium</topic><topic>Sphingobium sp. SYK‐6</topic><topic>Sphingomonadaceae - enzymology</topic><topic>Sphingomonas</topic><topic>Stem cells</topic><topic>Syk protein</topic><topic>Transgenic plants</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsuji, Yukiko</creatorcontrib><creatorcontrib>Vanholme, Ruben</creatorcontrib><creatorcontrib>Tobimatsu, Yuki</creatorcontrib><creatorcontrib>Ishikawa, Yasuyuki</creatorcontrib><creatorcontrib>Foster, Clifton E</creatorcontrib><creatorcontrib>Kamimura, Naofumi</creatorcontrib><creatorcontrib>Hishiyama, Shojiro</creatorcontrib><creatorcontrib>Hashimoto, Saki</creatorcontrib><creatorcontrib>Shino, Amiu</creatorcontrib><creatorcontrib>Hara, Hirofumi</creatorcontrib><creatorcontrib>Sato‐Izawa, Kanna</creatorcontrib><creatorcontrib>Oyarce, Paula</creatorcontrib><creatorcontrib>Goeminne, Geert</creatorcontrib><creatorcontrib>Morreel, Kris</creatorcontrib><creatorcontrib>Kikuchi, Jun</creatorcontrib><creatorcontrib>Takano, Toshiyuki</creatorcontrib><creatorcontrib>Fukuda, Masao</creatorcontrib><creatorcontrib>Katayama, Yoshihiro</creatorcontrib><creatorcontrib>Boerjan, Wout</creatorcontrib><creatorcontrib>Ralph, John</creatorcontrib><creatorcontrib>Masai, Eiji</creatorcontrib><creatorcontrib>Kajita, Shinya</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsuji, Yukiko</au><au>Vanholme, Ruben</au><au>Tobimatsu, Yuki</au><au>Ishikawa, Yasuyuki</au><au>Foster, Clifton E</au><au>Kamimura, Naofumi</au><au>Hishiyama, Shojiro</au><au>Hashimoto, Saki</au><au>Shino, Amiu</au><au>Hara, Hirofumi</au><au>Sato‐Izawa, Kanna</au><au>Oyarce, Paula</au><au>Goeminne, Geert</au><au>Morreel, Kris</au><au>Kikuchi, Jun</au><au>Takano, Toshiyuki</au><au>Fukuda, Masao</au><au>Katayama, Yoshihiro</au><au>Boerjan, Wout</au><au>Ralph, John</au><au>Masai, Eiji</au><au>Kajita, Shinya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introduction of chemically labile substructures into Arabidopsis lignin through the use of LigD, the Cα‐dehydrogenase from Sphingobium sp. strain SYK‐6</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2015-08</date><risdate>2015</risdate><volume>13</volume><issue>6</issue><spage>821</spage><epage>832</epage><pages>821-832</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Bacteria‐derived enzymes that can modify specific lignin substructures are potential targets to engineer plants for better biomass processability. The Gram‐negative bacterium Sphingobium sp. SYK‐6 possesses a Cα‐dehydrogenase (LigD) enzyme that has been shown to oxidize the α‐hydroxy functionalities in β–O–4‐linked dimers into α‐keto analogues that are more chemically labile. Here, we show that recombinant LigD can oxidize an even wider range of β–O–4‐linked dimers and oligomers, including the genuine dilignols, guaiacylglycerol‐β‐coniferyl alcohol ether and syringylglycerol‐β‐sinapyl alcohol ether. We explored the possibility of using LigD for biosynthetically engineering lignin by expressing the codon‐optimized ligD gene in Arabidopsis thaliana. The ligD cDNA, with or without a signal peptide for apoplast targeting, has been successfully expressed, and LigD activity could be detected in the extracts of the transgenic plants. UPLC‐MS/MS‐based metabolite profiling indicated that levels of oxidized guaiacyl (G) β–O–4‐coupled dilignols and analogues were significantly elevated in the LigD transgenic plants regardless of the signal peptide attachment to LigD. In parallel, 2D NMR analysis revealed a 2.1‐ to 2.8‐fold increased level of G‐type α‐keto‐β–O–4 linkages in cellulolytic enzyme lignins isolated from the stem cell walls of the LigD transgenic plants, indicating that the transformation was capable of altering lignin structure in the desired manner.</abstract><cop>England</cop><pub>Blackwell Pub</pub><pmid>25580543</pmid><doi>10.1111/pbi.12316</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2015-08, Vol.13 (6), p.821-832
issn 1467-7644
1467-7652
language eng
recordid cdi_proquest_miscellaneous_1694963058
source Wiley Online Library Open Access
subjects Alcohol
alcohols
Apoplast
Arabidopsis - enzymology
Arabidopsis - metabolism
Arabidopsis thaliana
Bacteria
biomass
Biosynthesis
Cell Wall - enzymology
Cell Wall - metabolism
Cell walls
complementary DNA
Cα‐dehydrogenase
Dehydrogenase
Dehydrogenases
Dimerization
Dimers
engineering
enzymes
Ethanol
Food
genes
Genetic engineering
Genetic transformation
Gram-negative bacteria
Lignin
Lignin - metabolism
lignin biosynthesis
Metabolites
NMR
Nuclear magnetic resonance
nuclear magnetic resonance spectroscopy
Oxidoreductases - metabolism
Phenols - metabolism
Plant extracts
signal peptide
Sinapyl alcohol
Sphingobium
Sphingobium sp. SYK‐6
Sphingomonadaceae - enzymology
Sphingomonas
Stem cells
Syk protein
Transgenic plants
Two dimensional analysis
title Introduction of chemically labile substructures into Arabidopsis lignin through the use of LigD, the Cα‐dehydrogenase from Sphingobium sp. strain SYK‐6
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A09%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introduction%20of%20chemically%20labile%20substructures%20into%20Arabidopsis%20lignin%20through%20the%20use%20of%20LigD,%20the%20C%CE%B1%E2%80%90dehydrogenase%20from%20Sphingobium%20sp.%20strain%20SYK%E2%80%906&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Tsuji,%20Yukiko&rft.date=2015-08&rft.volume=13&rft.issue=6&rft.spage=821&rft.epage=832&rft.pages=821-832&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12316&rft_dat=%3Cproquest_24P%3E1694963058%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067681963&rft_id=info:pmid/25580543&rfr_iscdi=true