Introduction of chemically labile substructures into Arabidopsis lignin through the use of LigD, the Cα‐dehydrogenase from Sphingobium sp. strain SYK‐6
Bacteria‐derived enzymes that can modify specific lignin substructures are potential targets to engineer plants for better biomass processability. The Gram‐negative bacterium Sphingobium sp. SYK‐6 possesses a Cα‐dehydrogenase (LigD) enzyme that has been shown to oxidize the α‐hydroxy functionalities...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2015-08, Vol.13 (6), p.821-832 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 832 |
---|---|
container_issue | 6 |
container_start_page | 821 |
container_title | Plant biotechnology journal |
container_volume | 13 |
creator | Tsuji, Yukiko Vanholme, Ruben Tobimatsu, Yuki Ishikawa, Yasuyuki Foster, Clifton E Kamimura, Naofumi Hishiyama, Shojiro Hashimoto, Saki Shino, Amiu Hara, Hirofumi Sato‐Izawa, Kanna Oyarce, Paula Goeminne, Geert Morreel, Kris Kikuchi, Jun Takano, Toshiyuki Fukuda, Masao Katayama, Yoshihiro Boerjan, Wout Ralph, John Masai, Eiji Kajita, Shinya |
description | Bacteria‐derived enzymes that can modify specific lignin substructures are potential targets to engineer plants for better biomass processability. The Gram‐negative bacterium Sphingobium sp. SYK‐6 possesses a Cα‐dehydrogenase (LigD) enzyme that has been shown to oxidize the α‐hydroxy functionalities in β–O–4‐linked dimers into α‐keto analogues that are more chemically labile. Here, we show that recombinant LigD can oxidize an even wider range of β–O–4‐linked dimers and oligomers, including the genuine dilignols, guaiacylglycerol‐β‐coniferyl alcohol ether and syringylglycerol‐β‐sinapyl alcohol ether. We explored the possibility of using LigD for biosynthetically engineering lignin by expressing the codon‐optimized ligD gene in Arabidopsis thaliana. The ligD cDNA, with or without a signal peptide for apoplast targeting, has been successfully expressed, and LigD activity could be detected in the extracts of the transgenic plants. UPLC‐MS/MS‐based metabolite profiling indicated that levels of oxidized guaiacyl (G) β–O–4‐coupled dilignols and analogues were significantly elevated in the LigD transgenic plants regardless of the signal peptide attachment to LigD. In parallel, 2D NMR analysis revealed a 2.1‐ to 2.8‐fold increased level of G‐type α‐keto‐β–O–4 linkages in cellulolytic enzyme lignins isolated from the stem cell walls of the LigD transgenic plants, indicating that the transformation was capable of altering lignin structure in the desired manner. |
doi_str_mv | 10.1111/pbi.12316 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1694963058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1694963058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3976-6d8691ed85fd9439225bbe7d8c87c58a99e8e2cbb9eb6d1f60fb4b4c50400bc23</originalsourceid><addsrcrecordid>eNp10c9uFCEABvCJsbG1evAFlMSLJt0tMAMzHOtqdeMmmqw9eCL8mxmaGRhhiNmbj-AD-BK-iA_RJ5F22x5M5AKBHx8kX1E8Q3CJ8jidpF0iXCL6oDhCFa0XNSX44f26qg6LxzFeQogRJfRRcYgJaSCpyqPi19rNweukZusd8C1QvRmtEsOwA4OQdjAgJhnnkEUKJgLrZg_OQj7Sfoo2gsF2zjow98Gnrs-zASma66iN7d6e3Gys_vy--vFTm36ng--MExm0wY9gO_XWdV7aNII4LUF-SOSw7deP2dMnxUErhmie3s7HxcX5uy-rD4vNp_fr1dlmoUpW0wXVDWXI6Ia0mlUlw5hIaWrdqKZWpBGMmcZgJSUzkmrUUtjKSlaKwApCqXB5XLza507Bf0smzny0UZlhEM74FDmirGK0hKTJ9OU_9NKn4PLveAlpTRuUYVav90oFH2MwLZ-CHUXYcQT5dWU8V8ZvKsv2-W1ikqPR9_KuowxO9-B7bmP3_yT--c36LvLF_kYrPBddsJFfbDFEFEKE65LB8i-sea3f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067681963</pqid></control><display><type>article</type><title>Introduction of chemically labile substructures into Arabidopsis lignin through the use of LigD, the Cα‐dehydrogenase from Sphingobium sp. strain SYK‐6</title><source>Wiley Online Library Open Access</source><creator>Tsuji, Yukiko ; Vanholme, Ruben ; Tobimatsu, Yuki ; Ishikawa, Yasuyuki ; Foster, Clifton E ; Kamimura, Naofumi ; Hishiyama, Shojiro ; Hashimoto, Saki ; Shino, Amiu ; Hara, Hirofumi ; Sato‐Izawa, Kanna ; Oyarce, Paula ; Goeminne, Geert ; Morreel, Kris ; Kikuchi, Jun ; Takano, Toshiyuki ; Fukuda, Masao ; Katayama, Yoshihiro ; Boerjan, Wout ; Ralph, John ; Masai, Eiji ; Kajita, Shinya</creator><creatorcontrib>Tsuji, Yukiko ; Vanholme, Ruben ; Tobimatsu, Yuki ; Ishikawa, Yasuyuki ; Foster, Clifton E ; Kamimura, Naofumi ; Hishiyama, Shojiro ; Hashimoto, Saki ; Shino, Amiu ; Hara, Hirofumi ; Sato‐Izawa, Kanna ; Oyarce, Paula ; Goeminne, Geert ; Morreel, Kris ; Kikuchi, Jun ; Takano, Toshiyuki ; Fukuda, Masao ; Katayama, Yoshihiro ; Boerjan, Wout ; Ralph, John ; Masai, Eiji ; Kajita, Shinya</creatorcontrib><description>Bacteria‐derived enzymes that can modify specific lignin substructures are potential targets to engineer plants for better biomass processability. The Gram‐negative bacterium Sphingobium sp. SYK‐6 possesses a Cα‐dehydrogenase (LigD) enzyme that has been shown to oxidize the α‐hydroxy functionalities in β–O–4‐linked dimers into α‐keto analogues that are more chemically labile. Here, we show that recombinant LigD can oxidize an even wider range of β–O–4‐linked dimers and oligomers, including the genuine dilignols, guaiacylglycerol‐β‐coniferyl alcohol ether and syringylglycerol‐β‐sinapyl alcohol ether. We explored the possibility of using LigD for biosynthetically engineering lignin by expressing the codon‐optimized ligD gene in Arabidopsis thaliana. The ligD cDNA, with or without a signal peptide for apoplast targeting, has been successfully expressed, and LigD activity could be detected in the extracts of the transgenic plants. UPLC‐MS/MS‐based metabolite profiling indicated that levels of oxidized guaiacyl (G) β–O–4‐coupled dilignols and analogues were significantly elevated in the LigD transgenic plants regardless of the signal peptide attachment to LigD. In parallel, 2D NMR analysis revealed a 2.1‐ to 2.8‐fold increased level of G‐type α‐keto‐β–O–4 linkages in cellulolytic enzyme lignins isolated from the stem cell walls of the LigD transgenic plants, indicating that the transformation was capable of altering lignin structure in the desired manner.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12316</identifier><identifier>PMID: 25580543</identifier><language>eng</language><publisher>England: Blackwell Pub</publisher><subject>Alcohol ; alcohols ; Apoplast ; Arabidopsis - enzymology ; Arabidopsis - metabolism ; Arabidopsis thaliana ; Bacteria ; biomass ; Biosynthesis ; Cell Wall - enzymology ; Cell Wall - metabolism ; Cell walls ; complementary DNA ; Cα‐dehydrogenase ; Dehydrogenase ; Dehydrogenases ; Dimerization ; Dimers ; engineering ; enzymes ; Ethanol ; Food ; genes ; Genetic engineering ; Genetic transformation ; Gram-negative bacteria ; Lignin ; Lignin - metabolism ; lignin biosynthesis ; Metabolites ; NMR ; Nuclear magnetic resonance ; nuclear magnetic resonance spectroscopy ; Oxidoreductases - metabolism ; Phenols - metabolism ; Plant extracts ; signal peptide ; Sinapyl alcohol ; Sphingobium ; Sphingobium sp. SYK‐6 ; Sphingomonadaceae - enzymology ; Sphingomonas ; Stem cells ; Syk protein ; Transgenic plants ; Two dimensional analysis</subject><ispartof>Plant biotechnology journal, 2015-08, Vol.13 (6), p.821-832</ispartof><rights>2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd</rights><rights>2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2015. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3976-6d8691ed85fd9439225bbe7d8c87c58a99e8e2cbb9eb6d1f60fb4b4c50400bc23</citedby><cites>FETCH-LOGICAL-c3976-6d8691ed85fd9439225bbe7d8c87c58a99e8e2cbb9eb6d1f60fb4b4c50400bc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12316$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12316$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12316$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25580543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsuji, Yukiko</creatorcontrib><creatorcontrib>Vanholme, Ruben</creatorcontrib><creatorcontrib>Tobimatsu, Yuki</creatorcontrib><creatorcontrib>Ishikawa, Yasuyuki</creatorcontrib><creatorcontrib>Foster, Clifton E</creatorcontrib><creatorcontrib>Kamimura, Naofumi</creatorcontrib><creatorcontrib>Hishiyama, Shojiro</creatorcontrib><creatorcontrib>Hashimoto, Saki</creatorcontrib><creatorcontrib>Shino, Amiu</creatorcontrib><creatorcontrib>Hara, Hirofumi</creatorcontrib><creatorcontrib>Sato‐Izawa, Kanna</creatorcontrib><creatorcontrib>Oyarce, Paula</creatorcontrib><creatorcontrib>Goeminne, Geert</creatorcontrib><creatorcontrib>Morreel, Kris</creatorcontrib><creatorcontrib>Kikuchi, Jun</creatorcontrib><creatorcontrib>Takano, Toshiyuki</creatorcontrib><creatorcontrib>Fukuda, Masao</creatorcontrib><creatorcontrib>Katayama, Yoshihiro</creatorcontrib><creatorcontrib>Boerjan, Wout</creatorcontrib><creatorcontrib>Ralph, John</creatorcontrib><creatorcontrib>Masai, Eiji</creatorcontrib><creatorcontrib>Kajita, Shinya</creatorcontrib><title>Introduction of chemically labile substructures into Arabidopsis lignin through the use of LigD, the Cα‐dehydrogenase from Sphingobium sp. strain SYK‐6</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Bacteria‐derived enzymes that can modify specific lignin substructures are potential targets to engineer plants for better biomass processability. The Gram‐negative bacterium Sphingobium sp. SYK‐6 possesses a Cα‐dehydrogenase (LigD) enzyme that has been shown to oxidize the α‐hydroxy functionalities in β–O–4‐linked dimers into α‐keto analogues that are more chemically labile. Here, we show that recombinant LigD can oxidize an even wider range of β–O–4‐linked dimers and oligomers, including the genuine dilignols, guaiacylglycerol‐β‐coniferyl alcohol ether and syringylglycerol‐β‐sinapyl alcohol ether. We explored the possibility of using LigD for biosynthetically engineering lignin by expressing the codon‐optimized ligD gene in Arabidopsis thaliana. The ligD cDNA, with or without a signal peptide for apoplast targeting, has been successfully expressed, and LigD activity could be detected in the extracts of the transgenic plants. UPLC‐MS/MS‐based metabolite profiling indicated that levels of oxidized guaiacyl (G) β–O–4‐coupled dilignols and analogues were significantly elevated in the LigD transgenic plants regardless of the signal peptide attachment to LigD. In parallel, 2D NMR analysis revealed a 2.1‐ to 2.8‐fold increased level of G‐type α‐keto‐β–O–4 linkages in cellulolytic enzyme lignins isolated from the stem cell walls of the LigD transgenic plants, indicating that the transformation was capable of altering lignin structure in the desired manner.</description><subject>Alcohol</subject><subject>alcohols</subject><subject>Apoplast</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Bacteria</subject><subject>biomass</subject><subject>Biosynthesis</subject><subject>Cell Wall - enzymology</subject><subject>Cell Wall - metabolism</subject><subject>Cell walls</subject><subject>complementary DNA</subject><subject>Cα‐dehydrogenase</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>engineering</subject><subject>enzymes</subject><subject>Ethanol</subject><subject>Food</subject><subject>genes</subject><subject>Genetic engineering</subject><subject>Genetic transformation</subject><subject>Gram-negative bacteria</subject><subject>Lignin</subject><subject>Lignin - metabolism</subject><subject>lignin biosynthesis</subject><subject>Metabolites</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Oxidoreductases - metabolism</subject><subject>Phenols - metabolism</subject><subject>Plant extracts</subject><subject>signal peptide</subject><subject>Sinapyl alcohol</subject><subject>Sphingobium</subject><subject>Sphingobium sp. SYK‐6</subject><subject>Sphingomonadaceae - enzymology</subject><subject>Sphingomonas</subject><subject>Stem cells</subject><subject>Syk protein</subject><subject>Transgenic plants</subject><subject>Two dimensional analysis</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10c9uFCEABvCJsbG1evAFlMSLJt0tMAMzHOtqdeMmmqw9eCL8mxmaGRhhiNmbj-AD-BK-iA_RJ5F22x5M5AKBHx8kX1E8Q3CJ8jidpF0iXCL6oDhCFa0XNSX44f26qg6LxzFeQogRJfRRcYgJaSCpyqPi19rNweukZusd8C1QvRmtEsOwA4OQdjAgJhnnkEUKJgLrZg_OQj7Sfoo2gsF2zjow98Gnrs-zASma66iN7d6e3Gys_vy--vFTm36ng--MExm0wY9gO_XWdV7aNII4LUF-SOSw7deP2dMnxUErhmie3s7HxcX5uy-rD4vNp_fr1dlmoUpW0wXVDWXI6Ia0mlUlw5hIaWrdqKZWpBGMmcZgJSUzkmrUUtjKSlaKwApCqXB5XLza507Bf0smzny0UZlhEM74FDmirGK0hKTJ9OU_9NKn4PLveAlpTRuUYVav90oFH2MwLZ-CHUXYcQT5dWU8V8ZvKsv2-W1ikqPR9_KuowxO9-B7bmP3_yT--c36LvLF_kYrPBddsJFfbDFEFEKE65LB8i-sea3f</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Tsuji, Yukiko</creator><creator>Vanholme, Ruben</creator><creator>Tobimatsu, Yuki</creator><creator>Ishikawa, Yasuyuki</creator><creator>Foster, Clifton E</creator><creator>Kamimura, Naofumi</creator><creator>Hishiyama, Shojiro</creator><creator>Hashimoto, Saki</creator><creator>Shino, Amiu</creator><creator>Hara, Hirofumi</creator><creator>Sato‐Izawa, Kanna</creator><creator>Oyarce, Paula</creator><creator>Goeminne, Geert</creator><creator>Morreel, Kris</creator><creator>Kikuchi, Jun</creator><creator>Takano, Toshiyuki</creator><creator>Fukuda, Masao</creator><creator>Katayama, Yoshihiro</creator><creator>Boerjan, Wout</creator><creator>Ralph, John</creator><creator>Masai, Eiji</creator><creator>Kajita, Shinya</creator><general>Blackwell Pub</general><general>John Wiley & Sons, Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201508</creationdate><title>Introduction of chemically labile substructures into Arabidopsis lignin through the use of LigD, the Cα‐dehydrogenase from Sphingobium sp. strain SYK‐6</title><author>Tsuji, Yukiko ; Vanholme, Ruben ; Tobimatsu, Yuki ; Ishikawa, Yasuyuki ; Foster, Clifton E ; Kamimura, Naofumi ; Hishiyama, Shojiro ; Hashimoto, Saki ; Shino, Amiu ; Hara, Hirofumi ; Sato‐Izawa, Kanna ; Oyarce, Paula ; Goeminne, Geert ; Morreel, Kris ; Kikuchi, Jun ; Takano, Toshiyuki ; Fukuda, Masao ; Katayama, Yoshihiro ; Boerjan, Wout ; Ralph, John ; Masai, Eiji ; Kajita, Shinya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3976-6d8691ed85fd9439225bbe7d8c87c58a99e8e2cbb9eb6d1f60fb4b4c50400bc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alcohol</topic><topic>alcohols</topic><topic>Apoplast</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Bacteria</topic><topic>biomass</topic><topic>Biosynthesis</topic><topic>Cell Wall - enzymology</topic><topic>Cell Wall - metabolism</topic><topic>Cell walls</topic><topic>complementary DNA</topic><topic>Cα‐dehydrogenase</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>engineering</topic><topic>enzymes</topic><topic>Ethanol</topic><topic>Food</topic><topic>genes</topic><topic>Genetic engineering</topic><topic>Genetic transformation</topic><topic>Gram-negative bacteria</topic><topic>Lignin</topic><topic>Lignin - metabolism</topic><topic>lignin biosynthesis</topic><topic>Metabolites</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Oxidoreductases - metabolism</topic><topic>Phenols - metabolism</topic><topic>Plant extracts</topic><topic>signal peptide</topic><topic>Sinapyl alcohol</topic><topic>Sphingobium</topic><topic>Sphingobium sp. SYK‐6</topic><topic>Sphingomonadaceae - enzymology</topic><topic>Sphingomonas</topic><topic>Stem cells</topic><topic>Syk protein</topic><topic>Transgenic plants</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsuji, Yukiko</creatorcontrib><creatorcontrib>Vanholme, Ruben</creatorcontrib><creatorcontrib>Tobimatsu, Yuki</creatorcontrib><creatorcontrib>Ishikawa, Yasuyuki</creatorcontrib><creatorcontrib>Foster, Clifton E</creatorcontrib><creatorcontrib>Kamimura, Naofumi</creatorcontrib><creatorcontrib>Hishiyama, Shojiro</creatorcontrib><creatorcontrib>Hashimoto, Saki</creatorcontrib><creatorcontrib>Shino, Amiu</creatorcontrib><creatorcontrib>Hara, Hirofumi</creatorcontrib><creatorcontrib>Sato‐Izawa, Kanna</creatorcontrib><creatorcontrib>Oyarce, Paula</creatorcontrib><creatorcontrib>Goeminne, Geert</creatorcontrib><creatorcontrib>Morreel, Kris</creatorcontrib><creatorcontrib>Kikuchi, Jun</creatorcontrib><creatorcontrib>Takano, Toshiyuki</creatorcontrib><creatorcontrib>Fukuda, Masao</creatorcontrib><creatorcontrib>Katayama, Yoshihiro</creatorcontrib><creatorcontrib>Boerjan, Wout</creatorcontrib><creatorcontrib>Ralph, John</creatorcontrib><creatorcontrib>Masai, Eiji</creatorcontrib><creatorcontrib>Kajita, Shinya</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsuji, Yukiko</au><au>Vanholme, Ruben</au><au>Tobimatsu, Yuki</au><au>Ishikawa, Yasuyuki</au><au>Foster, Clifton E</au><au>Kamimura, Naofumi</au><au>Hishiyama, Shojiro</au><au>Hashimoto, Saki</au><au>Shino, Amiu</au><au>Hara, Hirofumi</au><au>Sato‐Izawa, Kanna</au><au>Oyarce, Paula</au><au>Goeminne, Geert</au><au>Morreel, Kris</au><au>Kikuchi, Jun</au><au>Takano, Toshiyuki</au><au>Fukuda, Masao</au><au>Katayama, Yoshihiro</au><au>Boerjan, Wout</au><au>Ralph, John</au><au>Masai, Eiji</au><au>Kajita, Shinya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introduction of chemically labile substructures into Arabidopsis lignin through the use of LigD, the Cα‐dehydrogenase from Sphingobium sp. strain SYK‐6</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2015-08</date><risdate>2015</risdate><volume>13</volume><issue>6</issue><spage>821</spage><epage>832</epage><pages>821-832</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Bacteria‐derived enzymes that can modify specific lignin substructures are potential targets to engineer plants for better biomass processability. The Gram‐negative bacterium Sphingobium sp. SYK‐6 possesses a Cα‐dehydrogenase (LigD) enzyme that has been shown to oxidize the α‐hydroxy functionalities in β–O–4‐linked dimers into α‐keto analogues that are more chemically labile. Here, we show that recombinant LigD can oxidize an even wider range of β–O–4‐linked dimers and oligomers, including the genuine dilignols, guaiacylglycerol‐β‐coniferyl alcohol ether and syringylglycerol‐β‐sinapyl alcohol ether. We explored the possibility of using LigD for biosynthetically engineering lignin by expressing the codon‐optimized ligD gene in Arabidopsis thaliana. The ligD cDNA, with or without a signal peptide for apoplast targeting, has been successfully expressed, and LigD activity could be detected in the extracts of the transgenic plants. UPLC‐MS/MS‐based metabolite profiling indicated that levels of oxidized guaiacyl (G) β–O–4‐coupled dilignols and analogues were significantly elevated in the LigD transgenic plants regardless of the signal peptide attachment to LigD. In parallel, 2D NMR analysis revealed a 2.1‐ to 2.8‐fold increased level of G‐type α‐keto‐β–O–4 linkages in cellulolytic enzyme lignins isolated from the stem cell walls of the LigD transgenic plants, indicating that the transformation was capable of altering lignin structure in the desired manner.</abstract><cop>England</cop><pub>Blackwell Pub</pub><pmid>25580543</pmid><doi>10.1111/pbi.12316</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2015-08, Vol.13 (6), p.821-832 |
issn | 1467-7644 1467-7652 |
language | eng |
recordid | cdi_proquest_miscellaneous_1694963058 |
source | Wiley Online Library Open Access |
subjects | Alcohol alcohols Apoplast Arabidopsis - enzymology Arabidopsis - metabolism Arabidopsis thaliana Bacteria biomass Biosynthesis Cell Wall - enzymology Cell Wall - metabolism Cell walls complementary DNA Cα‐dehydrogenase Dehydrogenase Dehydrogenases Dimerization Dimers engineering enzymes Ethanol Food genes Genetic engineering Genetic transformation Gram-negative bacteria Lignin Lignin - metabolism lignin biosynthesis Metabolites NMR Nuclear magnetic resonance nuclear magnetic resonance spectroscopy Oxidoreductases - metabolism Phenols - metabolism Plant extracts signal peptide Sinapyl alcohol Sphingobium Sphingobium sp. SYK‐6 Sphingomonadaceae - enzymology Sphingomonas Stem cells Syk protein Transgenic plants Two dimensional analysis |
title | Introduction of chemically labile substructures into Arabidopsis lignin through the use of LigD, the Cα‐dehydrogenase from Sphingobium sp. strain SYK‐6 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A09%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introduction%20of%20chemically%20labile%20substructures%20into%20Arabidopsis%20lignin%20through%20the%20use%20of%20LigD,%20the%20C%CE%B1%E2%80%90dehydrogenase%20from%20Sphingobium%20sp.%20strain%20SYK%E2%80%906&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Tsuji,%20Yukiko&rft.date=2015-08&rft.volume=13&rft.issue=6&rft.spage=821&rft.epage=832&rft.pages=821-832&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12316&rft_dat=%3Cproquest_24P%3E1694963058%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067681963&rft_id=info:pmid/25580543&rfr_iscdi=true |