IRF-1 inhibits NF-κB activity, suppresses TRAF2 and cIAP1 and induces breast cancer cell specific growth inhibition
Interferon Regulatory Factor (IRF)-1, originally identified as a transcription factor of the human interferon (IFN)-β gene, mediates tumor suppression and may inhibit oncogenesis. We have shown that IRF-1 in human breast cancer cells results in the down-regulation of survivin, tumor cell death, and...
Gespeichert in:
Veröffentlicht in: | Cancer biology & therapy 2015-01, Vol.16 (7), p.1029-1041 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1041 |
---|---|
container_issue | 7 |
container_start_page | 1029 |
container_title | Cancer biology & therapy |
container_volume | 16 |
creator | Armstrong, Michaele J Stang, Michael T Liu, Ye Yan, Jin Pizzoferrato, Eva Yim, John H |
description | Interferon Regulatory Factor (IRF)-1, originally identified as a transcription factor of the human interferon (IFN)-β gene, mediates tumor suppression and may inhibit oncogenesis. We have shown that IRF-1 in human breast cancer cells results in the down-regulation of survivin, tumor cell death, and the inhibition of tumor growth in vivo in xenogeneic mouse models. In this current report, we initiate studies comparing the effect of IRF-1 in human nonmalignant breast cell and breast cancer cell lines. While IRF-1 in breast cancer cells results in growth inhibition and cell death, profound growth inhibition and cell death are not observed in nonmalignant human breast cells. We show that TNF-α or IFN-γ induces IRF-1 in breast cancer cells and results in enhanced cell death. Abrogation of IRF-1 diminishes TNF-α and IFN-γ-induced apoptosis. We test the hypothesis that IRF-1 augments TNF-α-induced apoptosis in breast cancer cells. Potential signaling networks elicited by IRF-1 are investigated by evaluating the NF-κB pathway. TNF-α and/or IFN-γ results in decreased presence of NF-κB p65 in the nucleus of breast cancer cells. While TNF-α and/or IFN-γ can induce IRF-1 in nonmalignant breast cells, a marked change in NF-κB p65 is not observed. Moreover, the ectopic expression of IRF-1 in breast cancer cells results in caspase-3, -7, -8 cleavage, inhibits NF-κB activity, and suppresses the expression of molecules involved in the NF-κB pathway. These data show that IRF-1 in human breast cancer cells elicits multiple signaling networks including intrinsic and extrinsic cell death and down-regulates molecules involved in the NF-κB pathway. |
doi_str_mv | 10.1080/15384047.2015.1046646 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1694961018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1694961018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3836-72fc573c744848cfbda4d077245e227df86f3a1faeac4ef2ac6fda3d8c7e98ba3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EoqXlEUBesiDF_3Y2iGnFwEhVQVW7thz_dIwycbCTVvNqPATPRMLMVLDpyle-3z3n2geANxidYaTQB8ypYojJM4Iwn66YEEw8A8eYc14pLsXzuaaqmqEj8KqUHwgRSUT9EhwRgTDmqj4Gw-p6WWEYu3Vs4lDg1bL6_escGjvE-zhs38My9n32pfgCb64XSwJN56BdLb7jv1Xs3GinXpO9KQO0prM-Q-vbFpbe2xiihXc5PQzrg0dM3Sl4EUxb_Ov9eQJul59vLr5Wl9--rC4Wl5WliopKkmC5pFYyppiyoXGGOSQlYdwTIl1QIlCDg_HGMh-IsSI4Q52y0teqMfQEfNzp9mOz8c76bsim1X2OG5O3Opmo_-90ca3v0r1mghAh60ng3V4gp5-jL4PexDI_znQ-jUVjUbNaYITVhPIdanMqJfvwaIORnhPTh8T0nJjeJzbNvf13x8epQ0QT8GkHxC6kvDEPKbdOD2bbphzy9N-xaPq0xx8zqqez</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1694961018</pqid></control><display><type>article</type><title>IRF-1 inhibits NF-κB activity, suppresses TRAF2 and cIAP1 and induces breast cancer cell specific growth inhibition</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Armstrong, Michaele J ; Stang, Michael T ; Liu, Ye ; Yan, Jin ; Pizzoferrato, Eva ; Yim, John H</creator><creatorcontrib>Armstrong, Michaele J ; Stang, Michael T ; Liu, Ye ; Yan, Jin ; Pizzoferrato, Eva ; Yim, John H</creatorcontrib><description>Interferon Regulatory Factor (IRF)-1, originally identified as a transcription factor of the human interferon (IFN)-β gene, mediates tumor suppression and may inhibit oncogenesis. We have shown that IRF-1 in human breast cancer cells results in the down-regulation of survivin, tumor cell death, and the inhibition of tumor growth in vivo in xenogeneic mouse models. In this current report, we initiate studies comparing the effect of IRF-1 in human nonmalignant breast cell and breast cancer cell lines. While IRF-1 in breast cancer cells results in growth inhibition and cell death, profound growth inhibition and cell death are not observed in nonmalignant human breast cells. We show that TNF-α or IFN-γ induces IRF-1 in breast cancer cells and results in enhanced cell death. Abrogation of IRF-1 diminishes TNF-α and IFN-γ-induced apoptosis. We test the hypothesis that IRF-1 augments TNF-α-induced apoptosis in breast cancer cells. Potential signaling networks elicited by IRF-1 are investigated by evaluating the NF-κB pathway. TNF-α and/or IFN-γ results in decreased presence of NF-κB p65 in the nucleus of breast cancer cells. While TNF-α and/or IFN-γ can induce IRF-1 in nonmalignant breast cells, a marked change in NF-κB p65 is not observed. Moreover, the ectopic expression of IRF-1 in breast cancer cells results in caspase-3, -7, -8 cleavage, inhibits NF-κB activity, and suppresses the expression of molecules involved in the NF-κB pathway. These data show that IRF-1 in human breast cancer cells elicits multiple signaling networks including intrinsic and extrinsic cell death and down-regulates molecules involved in the NF-κB pathway.</description><identifier>ISSN: 1538-4047</identifier><identifier>EISSN: 1555-8576</identifier><identifier>DOI: 10.1080/15384047.2015.1046646</identifier><identifier>PMID: 26011589</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>apoptosis ; Apoptosis - drug effects ; Apoptosis - genetics ; breast cancer ; Breast Neoplasms - genetics ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Caspases - metabolism ; Cell Line ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Cell Proliferation - genetics ; Humans ; IAP ; Immunoblotting ; Inhibitor of Apoptosis Proteins - metabolism ; Interferon Regulatory Factor-1 - genetics ; Interferon Regulatory Factor-1 - metabolism ; Interferon-gamma - pharmacology ; IRF-1 ; NF-kappa B - metabolism ; NF-κB ; Research Paper ; RNA Interference ; Signal Transduction - drug effects ; Signal Transduction - genetics ; TNF Receptor-Associated Factor 2 - metabolism ; Transcription Factor RelA - metabolism ; Tumor Necrosis Factor-alpha - pharmacology ; tumor suppressor</subject><ispartof>Cancer biology & therapy, 2015-01, Vol.16 (7), p.1029-1041</ispartof><rights>2015 Taylor & Francis Group, LLC 2015</rights><rights>2015 Taylor & Francis Group, LLC 2015 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3836-72fc573c744848cfbda4d077245e227df86f3a1faeac4ef2ac6fda3d8c7e98ba3</citedby><cites>FETCH-LOGICAL-c3836-72fc573c744848cfbda4d077245e227df86f3a1faeac4ef2ac6fda3d8c7e98ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4622679/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4622679/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26011589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Armstrong, Michaele J</creatorcontrib><creatorcontrib>Stang, Michael T</creatorcontrib><creatorcontrib>Liu, Ye</creatorcontrib><creatorcontrib>Yan, Jin</creatorcontrib><creatorcontrib>Pizzoferrato, Eva</creatorcontrib><creatorcontrib>Yim, John H</creatorcontrib><title>IRF-1 inhibits NF-κB activity, suppresses TRAF2 and cIAP1 and induces breast cancer cell specific growth inhibition</title><title>Cancer biology & therapy</title><addtitle>Cancer Biol Ther</addtitle><description>Interferon Regulatory Factor (IRF)-1, originally identified as a transcription factor of the human interferon (IFN)-β gene, mediates tumor suppression and may inhibit oncogenesis. We have shown that IRF-1 in human breast cancer cells results in the down-regulation of survivin, tumor cell death, and the inhibition of tumor growth in vivo in xenogeneic mouse models. In this current report, we initiate studies comparing the effect of IRF-1 in human nonmalignant breast cell and breast cancer cell lines. While IRF-1 in breast cancer cells results in growth inhibition and cell death, profound growth inhibition and cell death are not observed in nonmalignant human breast cells. We show that TNF-α or IFN-γ induces IRF-1 in breast cancer cells and results in enhanced cell death. Abrogation of IRF-1 diminishes TNF-α and IFN-γ-induced apoptosis. We test the hypothesis that IRF-1 augments TNF-α-induced apoptosis in breast cancer cells. Potential signaling networks elicited by IRF-1 are investigated by evaluating the NF-κB pathway. TNF-α and/or IFN-γ results in decreased presence of NF-κB p65 in the nucleus of breast cancer cells. While TNF-α and/or IFN-γ can induce IRF-1 in nonmalignant breast cells, a marked change in NF-κB p65 is not observed. Moreover, the ectopic expression of IRF-1 in breast cancer cells results in caspase-3, -7, -8 cleavage, inhibits NF-κB activity, and suppresses the expression of molecules involved in the NF-κB pathway. These data show that IRF-1 in human breast cancer cells elicits multiple signaling networks including intrinsic and extrinsic cell death and down-regulates molecules involved in the NF-κB pathway.</description><subject>apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis - genetics</subject><subject>breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Caspases - metabolism</subject><subject>Cell Line</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Proliferation - genetics</subject><subject>Humans</subject><subject>IAP</subject><subject>Immunoblotting</subject><subject>Inhibitor of Apoptosis Proteins - metabolism</subject><subject>Interferon Regulatory Factor-1 - genetics</subject><subject>Interferon Regulatory Factor-1 - metabolism</subject><subject>Interferon-gamma - pharmacology</subject><subject>IRF-1</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB</subject><subject>Research Paper</subject><subject>RNA Interference</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>TNF Receptor-Associated Factor 2 - metabolism</subject><subject>Transcription Factor RelA - metabolism</subject><subject>Tumor Necrosis Factor-alpha - pharmacology</subject><subject>tumor suppressor</subject><issn>1538-4047</issn><issn>1555-8576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EoqXlEUBesiDF_3Y2iGnFwEhVQVW7thz_dIwycbCTVvNqPATPRMLMVLDpyle-3z3n2geANxidYaTQB8ypYojJM4Iwn66YEEw8A8eYc14pLsXzuaaqmqEj8KqUHwgRSUT9EhwRgTDmqj4Gw-p6WWEYu3Vs4lDg1bL6_escGjvE-zhs38My9n32pfgCb64XSwJN56BdLb7jv1Xs3GinXpO9KQO0prM-Q-vbFpbe2xiihXc5PQzrg0dM3Sl4EUxb_Ov9eQJul59vLr5Wl9--rC4Wl5WliopKkmC5pFYyppiyoXGGOSQlYdwTIl1QIlCDg_HGMh-IsSI4Q52y0teqMfQEfNzp9mOz8c76bsim1X2OG5O3Opmo_-90ca3v0r1mghAh60ng3V4gp5-jL4PexDI_znQ-jUVjUbNaYITVhPIdanMqJfvwaIORnhPTh8T0nJjeJzbNvf13x8epQ0QT8GkHxC6kvDEPKbdOD2bbphzy9N-xaPq0xx8zqqez</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Armstrong, Michaele J</creator><creator>Stang, Michael T</creator><creator>Liu, Ye</creator><creator>Yan, Jin</creator><creator>Pizzoferrato, Eva</creator><creator>Yim, John H</creator><general>Taylor & Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150101</creationdate><title>IRF-1 inhibits NF-κB activity, suppresses TRAF2 and cIAP1 and induces breast cancer cell specific growth inhibition</title><author>Armstrong, Michaele J ; Stang, Michael T ; Liu, Ye ; Yan, Jin ; Pizzoferrato, Eva ; Yim, John H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3836-72fc573c744848cfbda4d077245e227df86f3a1faeac4ef2ac6fda3d8c7e98ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis - genetics</topic><topic>breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Caspases - metabolism</topic><topic>Cell Line</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Proliferation - genetics</topic><topic>Humans</topic><topic>IAP</topic><topic>Immunoblotting</topic><topic>Inhibitor of Apoptosis Proteins - metabolism</topic><topic>Interferon Regulatory Factor-1 - genetics</topic><topic>Interferon Regulatory Factor-1 - metabolism</topic><topic>Interferon-gamma - pharmacology</topic><topic>IRF-1</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB</topic><topic>Research Paper</topic><topic>RNA Interference</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>TNF Receptor-Associated Factor 2 - metabolism</topic><topic>Transcription Factor RelA - metabolism</topic><topic>Tumor Necrosis Factor-alpha - pharmacology</topic><topic>tumor suppressor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armstrong, Michaele J</creatorcontrib><creatorcontrib>Stang, Michael T</creatorcontrib><creatorcontrib>Liu, Ye</creatorcontrib><creatorcontrib>Yan, Jin</creatorcontrib><creatorcontrib>Pizzoferrato, Eva</creatorcontrib><creatorcontrib>Yim, John H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer biology & therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armstrong, Michaele J</au><au>Stang, Michael T</au><au>Liu, Ye</au><au>Yan, Jin</au><au>Pizzoferrato, Eva</au><au>Yim, John H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IRF-1 inhibits NF-κB activity, suppresses TRAF2 and cIAP1 and induces breast cancer cell specific growth inhibition</atitle><jtitle>Cancer biology & therapy</jtitle><addtitle>Cancer Biol Ther</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>16</volume><issue>7</issue><spage>1029</spage><epage>1041</epage><pages>1029-1041</pages><issn>1538-4047</issn><eissn>1555-8576</eissn><abstract>Interferon Regulatory Factor (IRF)-1, originally identified as a transcription factor of the human interferon (IFN)-β gene, mediates tumor suppression and may inhibit oncogenesis. We have shown that IRF-1 in human breast cancer cells results in the down-regulation of survivin, tumor cell death, and the inhibition of tumor growth in vivo in xenogeneic mouse models. In this current report, we initiate studies comparing the effect of IRF-1 in human nonmalignant breast cell and breast cancer cell lines. While IRF-1 in breast cancer cells results in growth inhibition and cell death, profound growth inhibition and cell death are not observed in nonmalignant human breast cells. We show that TNF-α or IFN-γ induces IRF-1 in breast cancer cells and results in enhanced cell death. Abrogation of IRF-1 diminishes TNF-α and IFN-γ-induced apoptosis. We test the hypothesis that IRF-1 augments TNF-α-induced apoptosis in breast cancer cells. Potential signaling networks elicited by IRF-1 are investigated by evaluating the NF-κB pathway. TNF-α and/or IFN-γ results in decreased presence of NF-κB p65 in the nucleus of breast cancer cells. While TNF-α and/or IFN-γ can induce IRF-1 in nonmalignant breast cells, a marked change in NF-κB p65 is not observed. Moreover, the ectopic expression of IRF-1 in breast cancer cells results in caspase-3, -7, -8 cleavage, inhibits NF-κB activity, and suppresses the expression of molecules involved in the NF-κB pathway. These data show that IRF-1 in human breast cancer cells elicits multiple signaling networks including intrinsic and extrinsic cell death and down-regulates molecules involved in the NF-κB pathway.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>26011589</pmid><doi>10.1080/15384047.2015.1046646</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1538-4047 |
ispartof | Cancer biology & therapy, 2015-01, Vol.16 (7), p.1029-1041 |
issn | 1538-4047 1555-8576 |
language | eng |
recordid | cdi_proquest_miscellaneous_1694961018 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | apoptosis Apoptosis - drug effects Apoptosis - genetics breast cancer Breast Neoplasms - genetics Breast Neoplasms - metabolism Breast Neoplasms - pathology Caspases - metabolism Cell Line Cell Line, Tumor Cell Proliferation - drug effects Cell Proliferation - genetics Humans IAP Immunoblotting Inhibitor of Apoptosis Proteins - metabolism Interferon Regulatory Factor-1 - genetics Interferon Regulatory Factor-1 - metabolism Interferon-gamma - pharmacology IRF-1 NF-kappa B - metabolism NF-κB Research Paper RNA Interference Signal Transduction - drug effects Signal Transduction - genetics TNF Receptor-Associated Factor 2 - metabolism Transcription Factor RelA - metabolism Tumor Necrosis Factor-alpha - pharmacology tumor suppressor |
title | IRF-1 inhibits NF-κB activity, suppresses TRAF2 and cIAP1 and induces breast cancer cell specific growth inhibition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IRF-1%20inhibits%20NF-%CE%BAB%20activity,%20suppresses%20TRAF2%20and%20cIAP1%20and%20induces%20breast%20cancer%20cell%20specific%20growth%20inhibition&rft.jtitle=Cancer%20biology%20&%20therapy&rft.au=Armstrong,%20Michaele%20J&rft.date=2015-01-01&rft.volume=16&rft.issue=7&rft.spage=1029&rft.epage=1041&rft.pages=1029-1041&rft.issn=1538-4047&rft.eissn=1555-8576&rft_id=info:doi/10.1080/15384047.2015.1046646&rft_dat=%3Cproquest_cross%3E1694961018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1694961018&rft_id=info:pmid/26011589&rfr_iscdi=true |