Plant virus directed fabrication of nanoscale materials and devices
Abstract Bottom-up self-assembly methods in which individual molecular components self-organize to form functional nanoscale patterns are of long-standing interest in the field of materials sciences. Such self-assembly processes are the hallmark of biology where complex macromolecules with defined f...
Gespeichert in:
Veröffentlicht in: | Virology (New York, N.Y.) N.Y.), 2015-05, Vol.479, p.200-212 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212 |
---|---|
container_issue | |
container_start_page | 200 |
container_title | Virology (New York, N.Y.) |
container_volume | 479 |
creator | Culver, James N Brown, Adam D Zang, Faheng Gnerlich, Markus Gerasopoulos, Konstantinos Ghodssi, Reza |
description | Abstract Bottom-up self-assembly methods in which individual molecular components self-organize to form functional nanoscale patterns are of long-standing interest in the field of materials sciences. Such self-assembly processes are the hallmark of biology where complex macromolecules with defined functions assemble from smaller molecular components. In particular, plant virus-derived nanoparticles (PVNs) have drawn considerable attention for their unique self-assembly architectures and functionalities that can be harnessed to produce new materials for industrial and biomedical applications. In particular, PVNs provide simple systems to model and assemble nanoscale particles of uniform size and shape that can be modified through molecularly defined chemical and genetic alterations. Furthermore, PVNs bring the added potential to “farm” such bio-nanomaterials on an industrial scale, providing a renewable and environmentally sustainable means for the production of nano-materials. This review outlines the fabrication and application of several PVNs for a range of uses that include energy storage, catalysis, and threat detection. |
doi_str_mv | 10.1016/j.virol.2015.03.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1693710766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0042682215001440</els_id><sourcerecordid>1693710766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-db4db6125084d02f6e935d2f94496d173146357c66b62fc6b5c61282b8968ef33</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVJaTZpf0Eg-NiLndGHx_ahgbC0TSDQQpOzkKUxaOO1UsleyL-vNpvk0EtOYsTzzjDPMHbGoeLA8WJT7XwMYyWA1xXICqD9wFYcOixBKn7EVgBKlNgKccxOUtpArpsGPrFjUbccG5Qrtv49mmkucqclFc5HsjO5YjB99NbMPkxFGIrJTCFZM1KxNTNFb8ZUmMkVjnbeUvrMPg75i768vKfs_sf3u_V1efvr58366ra0qlVz6XrleuSihlY5EANSJ2snhk6pDh1vJFco68Yi9igGi31tM92Kvu2wpUHKU_b10Pcxhr8LpVlvfbI05g0oLElz7GTDoUHMqDygNoaUIg36MfqtiU-ag97b0xv9bE_v7WmQOtvLqfOXAUu_JfeWedWVgW8HgPKaO09RJ-tpsnQwp13w7wy4_C9vRz9l0-MDPVHahCVO2aDmOgkN-s_-gPv78RqAKwXyH7iUlU4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1693710766</pqid></control><display><type>article</type><title>Plant virus directed fabrication of nanoscale materials and devices</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Culver, James N ; Brown, Adam D ; Zang, Faheng ; Gnerlich, Markus ; Gerasopoulos, Konstantinos ; Ghodssi, Reza</creator><creatorcontrib>Culver, James N ; Brown, Adam D ; Zang, Faheng ; Gnerlich, Markus ; Gerasopoulos, Konstantinos ; Ghodssi, Reza</creatorcontrib><description>Abstract Bottom-up self-assembly methods in which individual molecular components self-organize to form functional nanoscale patterns are of long-standing interest in the field of materials sciences. Such self-assembly processes are the hallmark of biology where complex macromolecules with defined functions assemble from smaller molecular components. In particular, plant virus-derived nanoparticles (PVNs) have drawn considerable attention for their unique self-assembly architectures and functionalities that can be harnessed to produce new materials for industrial and biomedical applications. In particular, PVNs provide simple systems to model and assemble nanoscale particles of uniform size and shape that can be modified through molecularly defined chemical and genetic alterations. Furthermore, PVNs bring the added potential to “farm” such bio-nanomaterials on an industrial scale, providing a renewable and environmentally sustainable means for the production of nano-materials. This review outlines the fabrication and application of several PVNs for a range of uses that include energy storage, catalysis, and threat detection.</description><identifier>ISSN: 0042-6822</identifier><identifier>EISSN: 1096-0341</identifier><identifier>DOI: 10.1016/j.virol.2015.03.008</identifier><identifier>PMID: 25816763</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bio-materials ; Biocompatible Materials - metabolism ; Biotechnology - methods ; Infectious Disease ; Nanostructures ; Nanotechnology ; Plant Viruses - genetics ; Plants - metabolism ; Plants - virology ; Virus assembly ; Virus particles ; Virus-like particles</subject><ispartof>Virology (New York, N.Y.), 2015-05, Vol.479, p.200-212</ispartof><rights>Elsevier Inc.</rights><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-db4db6125084d02f6e935d2f94496d173146357c66b62fc6b5c61282b8968ef33</citedby><cites>FETCH-LOGICAL-c484t-db4db6125084d02f6e935d2f94496d173146357c66b62fc6b5c61282b8968ef33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.virol.2015.03.008$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25816763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Culver, James N</creatorcontrib><creatorcontrib>Brown, Adam D</creatorcontrib><creatorcontrib>Zang, Faheng</creatorcontrib><creatorcontrib>Gnerlich, Markus</creatorcontrib><creatorcontrib>Gerasopoulos, Konstantinos</creatorcontrib><creatorcontrib>Ghodssi, Reza</creatorcontrib><title>Plant virus directed fabrication of nanoscale materials and devices</title><title>Virology (New York, N.Y.)</title><addtitle>Virology</addtitle><description>Abstract Bottom-up self-assembly methods in which individual molecular components self-organize to form functional nanoscale patterns are of long-standing interest in the field of materials sciences. Such self-assembly processes are the hallmark of biology where complex macromolecules with defined functions assemble from smaller molecular components. In particular, plant virus-derived nanoparticles (PVNs) have drawn considerable attention for their unique self-assembly architectures and functionalities that can be harnessed to produce new materials for industrial and biomedical applications. In particular, PVNs provide simple systems to model and assemble nanoscale particles of uniform size and shape that can be modified through molecularly defined chemical and genetic alterations. Furthermore, PVNs bring the added potential to “farm” such bio-nanomaterials on an industrial scale, providing a renewable and environmentally sustainable means for the production of nano-materials. This review outlines the fabrication and application of several PVNs for a range of uses that include energy storage, catalysis, and threat detection.</description><subject>Bio-materials</subject><subject>Biocompatible Materials - metabolism</subject><subject>Biotechnology - methods</subject><subject>Infectious Disease</subject><subject>Nanostructures</subject><subject>Nanotechnology</subject><subject>Plant Viruses - genetics</subject><subject>Plants - metabolism</subject><subject>Plants - virology</subject><subject>Virus assembly</subject><subject>Virus particles</subject><subject>Virus-like particles</subject><issn>0042-6822</issn><issn>1096-0341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVJaTZpf0Eg-NiLndGHx_ahgbC0TSDQQpOzkKUxaOO1UsleyL-vNpvk0EtOYsTzzjDPMHbGoeLA8WJT7XwMYyWA1xXICqD9wFYcOixBKn7EVgBKlNgKccxOUtpArpsGPrFjUbccG5Qrtv49mmkucqclFc5HsjO5YjB99NbMPkxFGIrJTCFZM1KxNTNFb8ZUmMkVjnbeUvrMPg75i768vKfs_sf3u_V1efvr58366ra0qlVz6XrleuSihlY5EANSJ2snhk6pDh1vJFco68Yi9igGi31tM92Kvu2wpUHKU_b10Pcxhr8LpVlvfbI05g0oLElz7GTDoUHMqDygNoaUIg36MfqtiU-ag97b0xv9bE_v7WmQOtvLqfOXAUu_JfeWedWVgW8HgPKaO09RJ-tpsnQwp13w7wy4_C9vRz9l0-MDPVHahCVO2aDmOgkN-s_-gPv78RqAKwXyH7iUlU4</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Culver, James N</creator><creator>Brown, Adam D</creator><creator>Zang, Faheng</creator><creator>Gnerlich, Markus</creator><creator>Gerasopoulos, Konstantinos</creator><creator>Ghodssi, Reza</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150501</creationdate><title>Plant virus directed fabrication of nanoscale materials and devices</title><author>Culver, James N ; Brown, Adam D ; Zang, Faheng ; Gnerlich, Markus ; Gerasopoulos, Konstantinos ; Ghodssi, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-db4db6125084d02f6e935d2f94496d173146357c66b62fc6b5c61282b8968ef33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bio-materials</topic><topic>Biocompatible Materials - metabolism</topic><topic>Biotechnology - methods</topic><topic>Infectious Disease</topic><topic>Nanostructures</topic><topic>Nanotechnology</topic><topic>Plant Viruses - genetics</topic><topic>Plants - metabolism</topic><topic>Plants - virology</topic><topic>Virus assembly</topic><topic>Virus particles</topic><topic>Virus-like particles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Culver, James N</creatorcontrib><creatorcontrib>Brown, Adam D</creatorcontrib><creatorcontrib>Zang, Faheng</creatorcontrib><creatorcontrib>Gnerlich, Markus</creatorcontrib><creatorcontrib>Gerasopoulos, Konstantinos</creatorcontrib><creatorcontrib>Ghodssi, Reza</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Virology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Culver, James N</au><au>Brown, Adam D</au><au>Zang, Faheng</au><au>Gnerlich, Markus</au><au>Gerasopoulos, Konstantinos</au><au>Ghodssi, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant virus directed fabrication of nanoscale materials and devices</atitle><jtitle>Virology (New York, N.Y.)</jtitle><addtitle>Virology</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>479</volume><spage>200</spage><epage>212</epage><pages>200-212</pages><issn>0042-6822</issn><eissn>1096-0341</eissn><abstract>Abstract Bottom-up self-assembly methods in which individual molecular components self-organize to form functional nanoscale patterns are of long-standing interest in the field of materials sciences. Such self-assembly processes are the hallmark of biology where complex macromolecules with defined functions assemble from smaller molecular components. In particular, plant virus-derived nanoparticles (PVNs) have drawn considerable attention for their unique self-assembly architectures and functionalities that can be harnessed to produce new materials for industrial and biomedical applications. In particular, PVNs provide simple systems to model and assemble nanoscale particles of uniform size and shape that can be modified through molecularly defined chemical and genetic alterations. Furthermore, PVNs bring the added potential to “farm” such bio-nanomaterials on an industrial scale, providing a renewable and environmentally sustainable means for the production of nano-materials. This review outlines the fabrication and application of several PVNs for a range of uses that include energy storage, catalysis, and threat detection.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25816763</pmid><doi>10.1016/j.virol.2015.03.008</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0042-6822 |
ispartof | Virology (New York, N.Y.), 2015-05, Vol.479, p.200-212 |
issn | 0042-6822 1096-0341 |
language | eng |
recordid | cdi_proquest_miscellaneous_1693710766 |
source | MEDLINE; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Bio-materials Biocompatible Materials - metabolism Biotechnology - methods Infectious Disease Nanostructures Nanotechnology Plant Viruses - genetics Plants - metabolism Plants - virology Virus assembly Virus particles Virus-like particles |
title | Plant virus directed fabrication of nanoscale materials and devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant%20virus%20directed%20fabrication%20of%20nanoscale%20materials%20and%20devices&rft.jtitle=Virology%20(New%20York,%20N.Y.)&rft.au=Culver,%20James%20N&rft.date=2015-05-01&rft.volume=479&rft.spage=200&rft.epage=212&rft.pages=200-212&rft.issn=0042-6822&rft.eissn=1096-0341&rft_id=info:doi/10.1016/j.virol.2015.03.008&rft_dat=%3Cproquest_cross%3E1693710766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1693710766&rft_id=info:pmid/25816763&rft_els_id=1_s2_0_S0042682215001440&rfr_iscdi=true |