Plant virus directed fabrication of nanoscale materials and devices

Abstract Bottom-up self-assembly methods in which individual molecular components self-organize to form functional nanoscale patterns are of long-standing interest in the field of materials sciences. Such self-assembly processes are the hallmark of biology where complex macromolecules with defined f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Virology (New York, N.Y.) N.Y.), 2015-05, Vol.479, p.200-212
Hauptverfasser: Culver, James N, Brown, Adam D, Zang, Faheng, Gnerlich, Markus, Gerasopoulos, Konstantinos, Ghodssi, Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 212
container_issue
container_start_page 200
container_title Virology (New York, N.Y.)
container_volume 479
creator Culver, James N
Brown, Adam D
Zang, Faheng
Gnerlich, Markus
Gerasopoulos, Konstantinos
Ghodssi, Reza
description Abstract Bottom-up self-assembly methods in which individual molecular components self-organize to form functional nanoscale patterns are of long-standing interest in the field of materials sciences. Such self-assembly processes are the hallmark of biology where complex macromolecules with defined functions assemble from smaller molecular components. In particular, plant virus-derived nanoparticles (PVNs) have drawn considerable attention for their unique self-assembly architectures and functionalities that can be harnessed to produce new materials for industrial and biomedical applications. In particular, PVNs provide simple systems to model and assemble nanoscale particles of uniform size and shape that can be modified through molecularly defined chemical and genetic alterations. Furthermore, PVNs bring the added potential to “farm” such bio-nanomaterials on an industrial scale, providing a renewable and environmentally sustainable means for the production of nano-materials. This review outlines the fabrication and application of several PVNs for a range of uses that include energy storage, catalysis, and threat detection.
doi_str_mv 10.1016/j.virol.2015.03.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1693710766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0042682215001440</els_id><sourcerecordid>1693710766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-db4db6125084d02f6e935d2f94496d173146357c66b62fc6b5c61282b8968ef33</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVJaTZpf0Eg-NiLndGHx_ahgbC0TSDQQpOzkKUxaOO1UsleyL-vNpvk0EtOYsTzzjDPMHbGoeLA8WJT7XwMYyWA1xXICqD9wFYcOixBKn7EVgBKlNgKccxOUtpArpsGPrFjUbccG5Qrtv49mmkucqclFc5HsjO5YjB99NbMPkxFGIrJTCFZM1KxNTNFb8ZUmMkVjnbeUvrMPg75i768vKfs_sf3u_V1efvr58366ra0qlVz6XrleuSihlY5EANSJ2snhk6pDh1vJFco68Yi9igGi31tM92Kvu2wpUHKU_b10Pcxhr8LpVlvfbI05g0oLElz7GTDoUHMqDygNoaUIg36MfqtiU-ag97b0xv9bE_v7WmQOtvLqfOXAUu_JfeWedWVgW8HgPKaO09RJ-tpsnQwp13w7wy4_C9vRz9l0-MDPVHahCVO2aDmOgkN-s_-gPv78RqAKwXyH7iUlU4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1693710766</pqid></control><display><type>article</type><title>Plant virus directed fabrication of nanoscale materials and devices</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Culver, James N ; Brown, Adam D ; Zang, Faheng ; Gnerlich, Markus ; Gerasopoulos, Konstantinos ; Ghodssi, Reza</creator><creatorcontrib>Culver, James N ; Brown, Adam D ; Zang, Faheng ; Gnerlich, Markus ; Gerasopoulos, Konstantinos ; Ghodssi, Reza</creatorcontrib><description>Abstract Bottom-up self-assembly methods in which individual molecular components self-organize to form functional nanoscale patterns are of long-standing interest in the field of materials sciences. Such self-assembly processes are the hallmark of biology where complex macromolecules with defined functions assemble from smaller molecular components. In particular, plant virus-derived nanoparticles (PVNs) have drawn considerable attention for their unique self-assembly architectures and functionalities that can be harnessed to produce new materials for industrial and biomedical applications. In particular, PVNs provide simple systems to model and assemble nanoscale particles of uniform size and shape that can be modified through molecularly defined chemical and genetic alterations. Furthermore, PVNs bring the added potential to “farm” such bio-nanomaterials on an industrial scale, providing a renewable and environmentally sustainable means for the production of nano-materials. This review outlines the fabrication and application of several PVNs for a range of uses that include energy storage, catalysis, and threat detection.</description><identifier>ISSN: 0042-6822</identifier><identifier>EISSN: 1096-0341</identifier><identifier>DOI: 10.1016/j.virol.2015.03.008</identifier><identifier>PMID: 25816763</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bio-materials ; Biocompatible Materials - metabolism ; Biotechnology - methods ; Infectious Disease ; Nanostructures ; Nanotechnology ; Plant Viruses - genetics ; Plants - metabolism ; Plants - virology ; Virus assembly ; Virus particles ; Virus-like particles</subject><ispartof>Virology (New York, N.Y.), 2015-05, Vol.479, p.200-212</ispartof><rights>Elsevier Inc.</rights><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-db4db6125084d02f6e935d2f94496d173146357c66b62fc6b5c61282b8968ef33</citedby><cites>FETCH-LOGICAL-c484t-db4db6125084d02f6e935d2f94496d173146357c66b62fc6b5c61282b8968ef33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.virol.2015.03.008$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25816763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Culver, James N</creatorcontrib><creatorcontrib>Brown, Adam D</creatorcontrib><creatorcontrib>Zang, Faheng</creatorcontrib><creatorcontrib>Gnerlich, Markus</creatorcontrib><creatorcontrib>Gerasopoulos, Konstantinos</creatorcontrib><creatorcontrib>Ghodssi, Reza</creatorcontrib><title>Plant virus directed fabrication of nanoscale materials and devices</title><title>Virology (New York, N.Y.)</title><addtitle>Virology</addtitle><description>Abstract Bottom-up self-assembly methods in which individual molecular components self-organize to form functional nanoscale patterns are of long-standing interest in the field of materials sciences. Such self-assembly processes are the hallmark of biology where complex macromolecules with defined functions assemble from smaller molecular components. In particular, plant virus-derived nanoparticles (PVNs) have drawn considerable attention for their unique self-assembly architectures and functionalities that can be harnessed to produce new materials for industrial and biomedical applications. In particular, PVNs provide simple systems to model and assemble nanoscale particles of uniform size and shape that can be modified through molecularly defined chemical and genetic alterations. Furthermore, PVNs bring the added potential to “farm” such bio-nanomaterials on an industrial scale, providing a renewable and environmentally sustainable means for the production of nano-materials. This review outlines the fabrication and application of several PVNs for a range of uses that include energy storage, catalysis, and threat detection.</description><subject>Bio-materials</subject><subject>Biocompatible Materials - metabolism</subject><subject>Biotechnology - methods</subject><subject>Infectious Disease</subject><subject>Nanostructures</subject><subject>Nanotechnology</subject><subject>Plant Viruses - genetics</subject><subject>Plants - metabolism</subject><subject>Plants - virology</subject><subject>Virus assembly</subject><subject>Virus particles</subject><subject>Virus-like particles</subject><issn>0042-6822</issn><issn>1096-0341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVJaTZpf0Eg-NiLndGHx_ahgbC0TSDQQpOzkKUxaOO1UsleyL-vNpvk0EtOYsTzzjDPMHbGoeLA8WJT7XwMYyWA1xXICqD9wFYcOixBKn7EVgBKlNgKccxOUtpArpsGPrFjUbccG5Qrtv49mmkucqclFc5HsjO5YjB99NbMPkxFGIrJTCFZM1KxNTNFb8ZUmMkVjnbeUvrMPg75i768vKfs_sf3u_V1efvr58366ra0qlVz6XrleuSihlY5EANSJ2snhk6pDh1vJFco68Yi9igGi31tM92Kvu2wpUHKU_b10Pcxhr8LpVlvfbI05g0oLElz7GTDoUHMqDygNoaUIg36MfqtiU-ag97b0xv9bE_v7WmQOtvLqfOXAUu_JfeWedWVgW8HgPKaO09RJ-tpsnQwp13w7wy4_C9vRz9l0-MDPVHahCVO2aDmOgkN-s_-gPv78RqAKwXyH7iUlU4</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Culver, James N</creator><creator>Brown, Adam D</creator><creator>Zang, Faheng</creator><creator>Gnerlich, Markus</creator><creator>Gerasopoulos, Konstantinos</creator><creator>Ghodssi, Reza</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150501</creationdate><title>Plant virus directed fabrication of nanoscale materials and devices</title><author>Culver, James N ; Brown, Adam D ; Zang, Faheng ; Gnerlich, Markus ; Gerasopoulos, Konstantinos ; Ghodssi, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-db4db6125084d02f6e935d2f94496d173146357c66b62fc6b5c61282b8968ef33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bio-materials</topic><topic>Biocompatible Materials - metabolism</topic><topic>Biotechnology - methods</topic><topic>Infectious Disease</topic><topic>Nanostructures</topic><topic>Nanotechnology</topic><topic>Plant Viruses - genetics</topic><topic>Plants - metabolism</topic><topic>Plants - virology</topic><topic>Virus assembly</topic><topic>Virus particles</topic><topic>Virus-like particles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Culver, James N</creatorcontrib><creatorcontrib>Brown, Adam D</creatorcontrib><creatorcontrib>Zang, Faheng</creatorcontrib><creatorcontrib>Gnerlich, Markus</creatorcontrib><creatorcontrib>Gerasopoulos, Konstantinos</creatorcontrib><creatorcontrib>Ghodssi, Reza</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Virology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Culver, James N</au><au>Brown, Adam D</au><au>Zang, Faheng</au><au>Gnerlich, Markus</au><au>Gerasopoulos, Konstantinos</au><au>Ghodssi, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant virus directed fabrication of nanoscale materials and devices</atitle><jtitle>Virology (New York, N.Y.)</jtitle><addtitle>Virology</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>479</volume><spage>200</spage><epage>212</epage><pages>200-212</pages><issn>0042-6822</issn><eissn>1096-0341</eissn><abstract>Abstract Bottom-up self-assembly methods in which individual molecular components self-organize to form functional nanoscale patterns are of long-standing interest in the field of materials sciences. Such self-assembly processes are the hallmark of biology where complex macromolecules with defined functions assemble from smaller molecular components. In particular, plant virus-derived nanoparticles (PVNs) have drawn considerable attention for their unique self-assembly architectures and functionalities that can be harnessed to produce new materials for industrial and biomedical applications. In particular, PVNs provide simple systems to model and assemble nanoscale particles of uniform size and shape that can be modified through molecularly defined chemical and genetic alterations. Furthermore, PVNs bring the added potential to “farm” such bio-nanomaterials on an industrial scale, providing a renewable and environmentally sustainable means for the production of nano-materials. This review outlines the fabrication and application of several PVNs for a range of uses that include energy storage, catalysis, and threat detection.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25816763</pmid><doi>10.1016/j.virol.2015.03.008</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0042-6822
ispartof Virology (New York, N.Y.), 2015-05, Vol.479, p.200-212
issn 0042-6822
1096-0341
language eng
recordid cdi_proquest_miscellaneous_1693710766
source MEDLINE; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Bio-materials
Biocompatible Materials - metabolism
Biotechnology - methods
Infectious Disease
Nanostructures
Nanotechnology
Plant Viruses - genetics
Plants - metabolism
Plants - virology
Virus assembly
Virus particles
Virus-like particles
title Plant virus directed fabrication of nanoscale materials and devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant%20virus%20directed%20fabrication%20of%20nanoscale%20materials%20and%20devices&rft.jtitle=Virology%20(New%20York,%20N.Y.)&rft.au=Culver,%20James%20N&rft.date=2015-05-01&rft.volume=479&rft.spage=200&rft.epage=212&rft.pages=200-212&rft.issn=0042-6822&rft.eissn=1096-0341&rft_id=info:doi/10.1016/j.virol.2015.03.008&rft_dat=%3Cproquest_cross%3E1693710766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1693710766&rft_id=info:pmid/25816763&rft_els_id=1_s2_0_S0042682215001440&rfr_iscdi=true