Mechanochemical tuning of myosin-I by the N-terminal region
Myosins are molecular motors that generate force to power a wide array of motile cellular functions. Myosins have the inherent ability to change their ATPase kinetics and force-generating properties when they encounter mechanical loads; however, little is known about the structural elements in myosi...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2015-06, Vol.112 (26), p.E3337-E3344 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Myosins are molecular motors that generate force to power a wide array of motile cellular functions. Myosins have the inherent ability to change their ATPase kinetics and force-generating properties when they encounter mechanical loads; however, little is known about the structural elements in myosin responsible for force sensing. Recent structural and biophysical studies have shown that myosin-I isoforms, Myosin-Ib (Myo1b) and Myosin-Ic (Myo1c), have similar unloaded kinetics and sequences but substantially different responses to forces that resist their working strokes. Myo1b has the properties of a tension-sensing anchor, slowing its actin-detachment kinetics by two orders of magnitude with just 1 pN of resisting force, whereas Myo1c has the properties of a slow transporter, generating power without slowing under 1-pN loads that would stall Myo1b. To examine the structural elements that lead to differences in force sensing, we used single-molecule and ensemble kinetic techniques to show that the myosin-I N-terminal region (NTR) plays a critical role in tuning myosin-I mechanochemistry. We found that replacing the Myo1c NTR with the Myo1b NTR changes the identity of the primary force-sensitive transition of Myo1c, resulting in sensitivity to forces of |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1506633112 |