Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions

Focal adhesions (FAs) link the extracellular matrix to the actin cytoskeleton to mediate cell adhesion, migration, mechanosensing and signalling. FAs have conserved nanoscale protein organization, suggesting that the position of proteins within FAs regulates their activity and function. Vinculin bin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2015-07, Vol.17 (7), p.880-892
Hauptverfasser: Case, Lindsay B., Baird, Michelle A., Shtengel, Gleb, Campbell, Sharon L., Hess, Harald F., Davidson, Michael W., Waterman, Clare M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 892
container_issue 7
container_start_page 880
container_title Nature cell biology
container_volume 17
creator Case, Lindsay B.
Baird, Michelle A.
Shtengel, Gleb
Campbell, Sharon L.
Hess, Harald F.
Davidson, Michael W.
Waterman, Clare M.
description Focal adhesions (FAs) link the extracellular matrix to the actin cytoskeleton to mediate cell adhesion, migration, mechanosensing and signalling. FAs have conserved nanoscale protein organization, suggesting that the position of proteins within FAs regulates their activity and function. Vinculin binds different FA proteins to mediate distinct cellular functions, but how vinculin’s interactions are spatiotemporally organized within FAs is unknown. Using interferometric photoactivation localization super-resolution microscopy to assay vinculin nanoscale localization and a FRET biosensor to assay vinculin conformation, we found that upward repositioning within the FA during FA maturation facilitates vinculin activation and mechanical reinforcement of FAs. Inactive vinculin localizes to the lower integrin signalling layer in FAs by binding to phospho-paxillin. Talin binding activates vinculin and targets active vinculin higher in FAs where vinculin can engage retrograde actin flow. Thus, specific protein interactions are spatially segregated within FAs at the nanoscale to regulate vinculin activation and function. Waterman and colleagues use super-resolution microscopy and biosensor technology to characterize the spatiotemporal regulation of the protein interactions within focal adhesions that control vinculin activation and function during focal adhesion maturation.
doi_str_mv 10.1038/ncb3180
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692754424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A421524186</galeid><sourcerecordid>A421524186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-d4f995e96c0bd1528a284145a2101be4e1fde564d03bdd3497758ac3748286e73</originalsourceid><addsrcrecordid>eNptkclqHDEQhoWJ8ZbgNwgNOcQ5tKNd3UdjEsdgE8hyVtRS9VimW5pI3SbJ01vDjJcxQQcVf31_UQtCxwSfEsyaj8F2jDR4Bx0QrmTNpWpfrWIpasVauo8Oc77FmHCO1R7apxILRik5QL-u4wB2HkyqRrA3Jvg8VrGv7nwoqg-VsZO_M5OPJQyuCibEbM0AVV4W1QxVTIvi-rdGiqGPJV0ZdwO5KPk12u3NkOHN5j9CPz9_-nH-pb76enF5fnZVW0noVDvet62AVlrcOSJoY2jDCReGEkw64EB6B0Jyh1nnHOOtUqIxline0EaCYkfoZF13meLvGfKkR58tDIMJEOesiWypEpxTXtB3L9DbOKdQutNESUmYbLl4ohZlWu1DH6dk7KqoPuO0tMhJIwt1-h-qPAejtzFA74u-ZfiwZSjMBH-mhZlz1pffv22z79esTTHnBL1eJj-a9FcTrFd315u7F_LtZqS5G8E9cg-HflpPLqmwgPRs5he17gE0A7Kp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766136945</pqid></control><display><type>article</type><title>Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Case, Lindsay B. ; Baird, Michelle A. ; Shtengel, Gleb ; Campbell, Sharon L. ; Hess, Harald F. ; Davidson, Michael W. ; Waterman, Clare M.</creator><creatorcontrib>Case, Lindsay B. ; Baird, Michelle A. ; Shtengel, Gleb ; Campbell, Sharon L. ; Hess, Harald F. ; Davidson, Michael W. ; Waterman, Clare M.</creatorcontrib><description>Focal adhesions (FAs) link the extracellular matrix to the actin cytoskeleton to mediate cell adhesion, migration, mechanosensing and signalling. FAs have conserved nanoscale protein organization, suggesting that the position of proteins within FAs regulates their activity and function. Vinculin binds different FA proteins to mediate distinct cellular functions, but how vinculin’s interactions are spatiotemporally organized within FAs is unknown. Using interferometric photoactivation localization super-resolution microscopy to assay vinculin nanoscale localization and a FRET biosensor to assay vinculin conformation, we found that upward repositioning within the FA during FA maturation facilitates vinculin activation and mechanical reinforcement of FAs. Inactive vinculin localizes to the lower integrin signalling layer in FAs by binding to phospho-paxillin. Talin binding activates vinculin and targets active vinculin higher in FAs where vinculin can engage retrograde actin flow. Thus, specific protein interactions are spatially segregated within FAs at the nanoscale to regulate vinculin activation and function. Waterman and colleagues use super-resolution microscopy and biosensor technology to characterize the spatiotemporal regulation of the protein interactions within focal adhesions that control vinculin activation and function during focal adhesion maturation.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb3180</identifier><identifier>PMID: 26053221</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/106 ; 14/33 ; 14/35 ; 14/63 ; 631/80/79 ; 631/80/79/1236 ; 631/80/79/2027 ; Actins - chemistry ; Actins - metabolism ; Biosensors ; Blotting, Western ; Cancer Research ; Cell adhesion ; Cell Biology ; Cell Line ; Cell Line, Tumor ; Cellular signal transduction ; Cytoskeletal proteins ; Developmental Biology ; Fluorescence Resonance Energy Transfer ; Focal Adhesions - genetics ; Focal Adhesions - metabolism ; Genetic aspects ; Humans ; Integrins - chemistry ; Integrins - metabolism ; Life Sciences ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Microscopy, Fluorescence - methods ; Models, Molecular ; Mutation ; Nanostructures ; Nanotechnology - methods ; Paxillin - chemistry ; Paxillin - genetics ; Paxillin - metabolism ; Photoactivation ; Properties ; Protein Binding ; Protein Structure, Tertiary ; RNA Interference ; Stem Cells ; Talin - chemistry ; Talin - genetics ; Talin - metabolism ; Vinculin - chemistry ; Vinculin - genetics ; Vinculin - metabolism</subject><ispartof>Nature cell biology, 2015-07, Vol.17 (7), p.880-892</ispartof><rights>Springer Nature Limited 2014</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-d4f995e96c0bd1528a284145a2101be4e1fde564d03bdd3497758ac3748286e73</citedby><cites>FETCH-LOGICAL-c612t-d4f995e96c0bd1528a284145a2101be4e1fde564d03bdd3497758ac3748286e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb3180$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb3180$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26053221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Case, Lindsay B.</creatorcontrib><creatorcontrib>Baird, Michelle A.</creatorcontrib><creatorcontrib>Shtengel, Gleb</creatorcontrib><creatorcontrib>Campbell, Sharon L.</creatorcontrib><creatorcontrib>Hess, Harald F.</creatorcontrib><creatorcontrib>Davidson, Michael W.</creatorcontrib><creatorcontrib>Waterman, Clare M.</creatorcontrib><title>Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Focal adhesions (FAs) link the extracellular matrix to the actin cytoskeleton to mediate cell adhesion, migration, mechanosensing and signalling. FAs have conserved nanoscale protein organization, suggesting that the position of proteins within FAs regulates their activity and function. Vinculin binds different FA proteins to mediate distinct cellular functions, but how vinculin’s interactions are spatiotemporally organized within FAs is unknown. Using interferometric photoactivation localization super-resolution microscopy to assay vinculin nanoscale localization and a FRET biosensor to assay vinculin conformation, we found that upward repositioning within the FA during FA maturation facilitates vinculin activation and mechanical reinforcement of FAs. Inactive vinculin localizes to the lower integrin signalling layer in FAs by binding to phospho-paxillin. Talin binding activates vinculin and targets active vinculin higher in FAs where vinculin can engage retrograde actin flow. Thus, specific protein interactions are spatially segregated within FAs at the nanoscale to regulate vinculin activation and function. Waterman and colleagues use super-resolution microscopy and biosensor technology to characterize the spatiotemporal regulation of the protein interactions within focal adhesions that control vinculin activation and function during focal adhesion maturation.</description><subject>13/1</subject><subject>13/106</subject><subject>14/33</subject><subject>14/35</subject><subject>14/63</subject><subject>631/80/79</subject><subject>631/80/79/1236</subject><subject>631/80/79/2027</subject><subject>Actins - chemistry</subject><subject>Actins - metabolism</subject><subject>Biosensors</subject><subject>Blotting, Western</subject><subject>Cancer Research</subject><subject>Cell adhesion</subject><subject>Cell Biology</subject><subject>Cell Line</subject><subject>Cell Line, Tumor</subject><subject>Cellular signal transduction</subject><subject>Cytoskeletal proteins</subject><subject>Developmental Biology</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Focal Adhesions - genetics</subject><subject>Focal Adhesions - metabolism</subject><subject>Genetic aspects</subject><subject>Humans</subject><subject>Integrins - chemistry</subject><subject>Integrins - metabolism</subject><subject>Life Sciences</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Nanostructures</subject><subject>Nanotechnology - methods</subject><subject>Paxillin - chemistry</subject><subject>Paxillin - genetics</subject><subject>Paxillin - metabolism</subject><subject>Photoactivation</subject><subject>Properties</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>RNA Interference</subject><subject>Stem Cells</subject><subject>Talin - chemistry</subject><subject>Talin - genetics</subject><subject>Talin - metabolism</subject><subject>Vinculin - chemistry</subject><subject>Vinculin - genetics</subject><subject>Vinculin - metabolism</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkclqHDEQhoWJ8ZbgNwgNOcQ5tKNd3UdjEsdgE8hyVtRS9VimW5pI3SbJ01vDjJcxQQcVf31_UQtCxwSfEsyaj8F2jDR4Bx0QrmTNpWpfrWIpasVauo8Oc77FmHCO1R7apxILRik5QL-u4wB2HkyqRrA3Jvg8VrGv7nwoqg-VsZO_M5OPJQyuCibEbM0AVV4W1QxVTIvi-rdGiqGPJV0ZdwO5KPk12u3NkOHN5j9CPz9_-nH-pb76enF5fnZVW0noVDvet62AVlrcOSJoY2jDCReGEkw64EB6B0Jyh1nnHOOtUqIxline0EaCYkfoZF13meLvGfKkR58tDIMJEOesiWypEpxTXtB3L9DbOKdQutNESUmYbLl4ohZlWu1DH6dk7KqoPuO0tMhJIwt1-h-qPAejtzFA74u-ZfiwZSjMBH-mhZlz1pffv22z79esTTHnBL1eJj-a9FcTrFd315u7F_LtZqS5G8E9cg-HflpPLqmwgPRs5he17gE0A7Kp</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Case, Lindsay B.</creator><creator>Baird, Michelle A.</creator><creator>Shtengel, Gleb</creator><creator>Campbell, Sharon L.</creator><creator>Hess, Harald F.</creator><creator>Davidson, Michael W.</creator><creator>Waterman, Clare M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20150701</creationdate><title>Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions</title><author>Case, Lindsay B. ; Baird, Michelle A. ; Shtengel, Gleb ; Campbell, Sharon L. ; Hess, Harald F. ; Davidson, Michael W. ; Waterman, Clare M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-d4f995e96c0bd1528a284145a2101be4e1fde564d03bdd3497758ac3748286e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/1</topic><topic>13/106</topic><topic>14/33</topic><topic>14/35</topic><topic>14/63</topic><topic>631/80/79</topic><topic>631/80/79/1236</topic><topic>631/80/79/2027</topic><topic>Actins - chemistry</topic><topic>Actins - metabolism</topic><topic>Biosensors</topic><topic>Blotting, Western</topic><topic>Cancer Research</topic><topic>Cell adhesion</topic><topic>Cell Biology</topic><topic>Cell Line</topic><topic>Cell Line, Tumor</topic><topic>Cellular signal transduction</topic><topic>Cytoskeletal proteins</topic><topic>Developmental Biology</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Focal Adhesions - genetics</topic><topic>Focal Adhesions - metabolism</topic><topic>Genetic aspects</topic><topic>Humans</topic><topic>Integrins - chemistry</topic><topic>Integrins - metabolism</topic><topic>Life Sciences</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Nanostructures</topic><topic>Nanotechnology - methods</topic><topic>Paxillin - chemistry</topic><topic>Paxillin - genetics</topic><topic>Paxillin - metabolism</topic><topic>Photoactivation</topic><topic>Properties</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>RNA Interference</topic><topic>Stem Cells</topic><topic>Talin - chemistry</topic><topic>Talin - genetics</topic><topic>Talin - metabolism</topic><topic>Vinculin - chemistry</topic><topic>Vinculin - genetics</topic><topic>Vinculin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Case, Lindsay B.</creatorcontrib><creatorcontrib>Baird, Michelle A.</creatorcontrib><creatorcontrib>Shtengel, Gleb</creatorcontrib><creatorcontrib>Campbell, Sharon L.</creatorcontrib><creatorcontrib>Hess, Harald F.</creatorcontrib><creatorcontrib>Davidson, Michael W.</creatorcontrib><creatorcontrib>Waterman, Clare M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Case, Lindsay B.</au><au>Baird, Michelle A.</au><au>Shtengel, Gleb</au><au>Campbell, Sharon L.</au><au>Hess, Harald F.</au><au>Davidson, Michael W.</au><au>Waterman, Clare M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>17</volume><issue>7</issue><spage>880</spage><epage>892</epage><pages>880-892</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Focal adhesions (FAs) link the extracellular matrix to the actin cytoskeleton to mediate cell adhesion, migration, mechanosensing and signalling. FAs have conserved nanoscale protein organization, suggesting that the position of proteins within FAs regulates their activity and function. Vinculin binds different FA proteins to mediate distinct cellular functions, but how vinculin’s interactions are spatiotemporally organized within FAs is unknown. Using interferometric photoactivation localization super-resolution microscopy to assay vinculin nanoscale localization and a FRET biosensor to assay vinculin conformation, we found that upward repositioning within the FA during FA maturation facilitates vinculin activation and mechanical reinforcement of FAs. Inactive vinculin localizes to the lower integrin signalling layer in FAs by binding to phospho-paxillin. Talin binding activates vinculin and targets active vinculin higher in FAs where vinculin can engage retrograde actin flow. Thus, specific protein interactions are spatially segregated within FAs at the nanoscale to regulate vinculin activation and function. Waterman and colleagues use super-resolution microscopy and biosensor technology to characterize the spatiotemporal regulation of the protein interactions within focal adhesions that control vinculin activation and function during focal adhesion maturation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26053221</pmid><doi>10.1038/ncb3180</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2015-07, Vol.17 (7), p.880-892
issn 1465-7392
1476-4679
language eng
recordid cdi_proquest_miscellaneous_1692754424
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 13/1
13/106
14/33
14/35
14/63
631/80/79
631/80/79/1236
631/80/79/2027
Actins - chemistry
Actins - metabolism
Biosensors
Blotting, Western
Cancer Research
Cell adhesion
Cell Biology
Cell Line
Cell Line, Tumor
Cellular signal transduction
Cytoskeletal proteins
Developmental Biology
Fluorescence Resonance Energy Transfer
Focal Adhesions - genetics
Focal Adhesions - metabolism
Genetic aspects
Humans
Integrins - chemistry
Integrins - metabolism
Life Sciences
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Microscopy, Fluorescence - methods
Models, Molecular
Mutation
Nanostructures
Nanotechnology - methods
Paxillin - chemistry
Paxillin - genetics
Paxillin - metabolism
Photoactivation
Properties
Protein Binding
Protein Structure, Tertiary
RNA Interference
Stem Cells
Talin - chemistry
Talin - genetics
Talin - metabolism
Vinculin - chemistry
Vinculin - genetics
Vinculin - metabolism
title Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanism%20of%20vinculin%20activation%20and%20nanoscale%20spatial%20organization%20in%20focal%20adhesions&rft.jtitle=Nature%20cell%20biology&rft.au=Case,%20Lindsay%20B.&rft.date=2015-07-01&rft.volume=17&rft.issue=7&rft.spage=880&rft.epage=892&rft.pages=880-892&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb3180&rft_dat=%3Cgale_proqu%3EA421524186%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766136945&rft_id=info:pmid/26053221&rft_galeid=A421524186&rfr_iscdi=true