Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions
Focal adhesions (FAs) link the extracellular matrix to the actin cytoskeleton to mediate cell adhesion, migration, mechanosensing and signalling. FAs have conserved nanoscale protein organization, suggesting that the position of proteins within FAs regulates their activity and function. Vinculin bin...
Gespeichert in:
Veröffentlicht in: | Nature cell biology 2015-07, Vol.17 (7), p.880-892 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 892 |
---|---|
container_issue | 7 |
container_start_page | 880 |
container_title | Nature cell biology |
container_volume | 17 |
creator | Case, Lindsay B. Baird, Michelle A. Shtengel, Gleb Campbell, Sharon L. Hess, Harald F. Davidson, Michael W. Waterman, Clare M. |
description | Focal adhesions (FAs) link the extracellular matrix to the actin cytoskeleton to mediate cell adhesion, migration, mechanosensing and signalling. FAs have conserved nanoscale protein organization, suggesting that the position of proteins within FAs regulates their activity and function. Vinculin binds different FA proteins to mediate distinct cellular functions, but how vinculin’s interactions are spatiotemporally organized within FAs is unknown. Using interferometric photoactivation localization super-resolution microscopy to assay vinculin nanoscale localization and a FRET biosensor to assay vinculin conformation, we found that upward repositioning within the FA during FA maturation facilitates vinculin activation and mechanical reinforcement of FAs. Inactive vinculin localizes to the lower integrin signalling layer in FAs by binding to phospho-paxillin. Talin binding activates vinculin and targets active vinculin higher in FAs where vinculin can engage retrograde actin flow. Thus, specific protein interactions are spatially segregated within FAs at the nanoscale to regulate vinculin activation and function.
Waterman and colleagues use super-resolution microscopy and biosensor technology to characterize the spatiotemporal regulation of the protein interactions within focal adhesions that control vinculin activation and function during focal adhesion maturation. |
doi_str_mv | 10.1038/ncb3180 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692754424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A421524186</galeid><sourcerecordid>A421524186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-d4f995e96c0bd1528a284145a2101be4e1fde564d03bdd3497758ac3748286e73</originalsourceid><addsrcrecordid>eNptkclqHDEQhoWJ8ZbgNwgNOcQ5tKNd3UdjEsdgE8hyVtRS9VimW5pI3SbJ01vDjJcxQQcVf31_UQtCxwSfEsyaj8F2jDR4Bx0QrmTNpWpfrWIpasVauo8Oc77FmHCO1R7apxILRik5QL-u4wB2HkyqRrA3Jvg8VrGv7nwoqg-VsZO_M5OPJQyuCibEbM0AVV4W1QxVTIvi-rdGiqGPJV0ZdwO5KPk12u3NkOHN5j9CPz9_-nH-pb76enF5fnZVW0noVDvet62AVlrcOSJoY2jDCReGEkw64EB6B0Jyh1nnHOOtUqIxline0EaCYkfoZF13meLvGfKkR58tDIMJEOesiWypEpxTXtB3L9DbOKdQutNESUmYbLl4ohZlWu1DH6dk7KqoPuO0tMhJIwt1-h-qPAejtzFA74u-ZfiwZSjMBH-mhZlz1pffv22z79esTTHnBL1eJj-a9FcTrFd315u7F_LtZqS5G8E9cg-HflpPLqmwgPRs5he17gE0A7Kp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766136945</pqid></control><display><type>article</type><title>Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Case, Lindsay B. ; Baird, Michelle A. ; Shtengel, Gleb ; Campbell, Sharon L. ; Hess, Harald F. ; Davidson, Michael W. ; Waterman, Clare M.</creator><creatorcontrib>Case, Lindsay B. ; Baird, Michelle A. ; Shtengel, Gleb ; Campbell, Sharon L. ; Hess, Harald F. ; Davidson, Michael W. ; Waterman, Clare M.</creatorcontrib><description>Focal adhesions (FAs) link the extracellular matrix to the actin cytoskeleton to mediate cell adhesion, migration, mechanosensing and signalling. FAs have conserved nanoscale protein organization, suggesting that the position of proteins within FAs regulates their activity and function. Vinculin binds different FA proteins to mediate distinct cellular functions, but how vinculin’s interactions are spatiotemporally organized within FAs is unknown. Using interferometric photoactivation localization super-resolution microscopy to assay vinculin nanoscale localization and a FRET biosensor to assay vinculin conformation, we found that upward repositioning within the FA during FA maturation facilitates vinculin activation and mechanical reinforcement of FAs. Inactive vinculin localizes to the lower integrin signalling layer in FAs by binding to phospho-paxillin. Talin binding activates vinculin and targets active vinculin higher in FAs where vinculin can engage retrograde actin flow. Thus, specific protein interactions are spatially segregated within FAs at the nanoscale to regulate vinculin activation and function.
Waterman and colleagues use super-resolution microscopy and biosensor technology to characterize the spatiotemporal regulation of the protein interactions within focal adhesions that control vinculin activation and function during focal adhesion maturation.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb3180</identifier><identifier>PMID: 26053221</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/106 ; 14/33 ; 14/35 ; 14/63 ; 631/80/79 ; 631/80/79/1236 ; 631/80/79/2027 ; Actins - chemistry ; Actins - metabolism ; Biosensors ; Blotting, Western ; Cancer Research ; Cell adhesion ; Cell Biology ; Cell Line ; Cell Line, Tumor ; Cellular signal transduction ; Cytoskeletal proteins ; Developmental Biology ; Fluorescence Resonance Energy Transfer ; Focal Adhesions - genetics ; Focal Adhesions - metabolism ; Genetic aspects ; Humans ; Integrins - chemistry ; Integrins - metabolism ; Life Sciences ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Microscopy, Fluorescence - methods ; Models, Molecular ; Mutation ; Nanostructures ; Nanotechnology - methods ; Paxillin - chemistry ; Paxillin - genetics ; Paxillin - metabolism ; Photoactivation ; Properties ; Protein Binding ; Protein Structure, Tertiary ; RNA Interference ; Stem Cells ; Talin - chemistry ; Talin - genetics ; Talin - metabolism ; Vinculin - chemistry ; Vinculin - genetics ; Vinculin - metabolism</subject><ispartof>Nature cell biology, 2015-07, Vol.17 (7), p.880-892</ispartof><rights>Springer Nature Limited 2014</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-d4f995e96c0bd1528a284145a2101be4e1fde564d03bdd3497758ac3748286e73</citedby><cites>FETCH-LOGICAL-c612t-d4f995e96c0bd1528a284145a2101be4e1fde564d03bdd3497758ac3748286e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb3180$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb3180$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26053221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Case, Lindsay B.</creatorcontrib><creatorcontrib>Baird, Michelle A.</creatorcontrib><creatorcontrib>Shtengel, Gleb</creatorcontrib><creatorcontrib>Campbell, Sharon L.</creatorcontrib><creatorcontrib>Hess, Harald F.</creatorcontrib><creatorcontrib>Davidson, Michael W.</creatorcontrib><creatorcontrib>Waterman, Clare M.</creatorcontrib><title>Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Focal adhesions (FAs) link the extracellular matrix to the actin cytoskeleton to mediate cell adhesion, migration, mechanosensing and signalling. FAs have conserved nanoscale protein organization, suggesting that the position of proteins within FAs regulates their activity and function. Vinculin binds different FA proteins to mediate distinct cellular functions, but how vinculin’s interactions are spatiotemporally organized within FAs is unknown. Using interferometric photoactivation localization super-resolution microscopy to assay vinculin nanoscale localization and a FRET biosensor to assay vinculin conformation, we found that upward repositioning within the FA during FA maturation facilitates vinculin activation and mechanical reinforcement of FAs. Inactive vinculin localizes to the lower integrin signalling layer in FAs by binding to phospho-paxillin. Talin binding activates vinculin and targets active vinculin higher in FAs where vinculin can engage retrograde actin flow. Thus, specific protein interactions are spatially segregated within FAs at the nanoscale to regulate vinculin activation and function.
Waterman and colleagues use super-resolution microscopy and biosensor technology to characterize the spatiotemporal regulation of the protein interactions within focal adhesions that control vinculin activation and function during focal adhesion maturation.</description><subject>13/1</subject><subject>13/106</subject><subject>14/33</subject><subject>14/35</subject><subject>14/63</subject><subject>631/80/79</subject><subject>631/80/79/1236</subject><subject>631/80/79/2027</subject><subject>Actins - chemistry</subject><subject>Actins - metabolism</subject><subject>Biosensors</subject><subject>Blotting, Western</subject><subject>Cancer Research</subject><subject>Cell adhesion</subject><subject>Cell Biology</subject><subject>Cell Line</subject><subject>Cell Line, Tumor</subject><subject>Cellular signal transduction</subject><subject>Cytoskeletal proteins</subject><subject>Developmental Biology</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Focal Adhesions - genetics</subject><subject>Focal Adhesions - metabolism</subject><subject>Genetic aspects</subject><subject>Humans</subject><subject>Integrins - chemistry</subject><subject>Integrins - metabolism</subject><subject>Life Sciences</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Nanostructures</subject><subject>Nanotechnology - methods</subject><subject>Paxillin - chemistry</subject><subject>Paxillin - genetics</subject><subject>Paxillin - metabolism</subject><subject>Photoactivation</subject><subject>Properties</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>RNA Interference</subject><subject>Stem Cells</subject><subject>Talin - chemistry</subject><subject>Talin - genetics</subject><subject>Talin - metabolism</subject><subject>Vinculin - chemistry</subject><subject>Vinculin - genetics</subject><subject>Vinculin - metabolism</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkclqHDEQhoWJ8ZbgNwgNOcQ5tKNd3UdjEsdgE8hyVtRS9VimW5pI3SbJ01vDjJcxQQcVf31_UQtCxwSfEsyaj8F2jDR4Bx0QrmTNpWpfrWIpasVauo8Oc77FmHCO1R7apxILRik5QL-u4wB2HkyqRrA3Jvg8VrGv7nwoqg-VsZO_M5OPJQyuCibEbM0AVV4W1QxVTIvi-rdGiqGPJV0ZdwO5KPk12u3NkOHN5j9CPz9_-nH-pb76enF5fnZVW0noVDvet62AVlrcOSJoY2jDCReGEkw64EB6B0Jyh1nnHOOtUqIxline0EaCYkfoZF13meLvGfKkR58tDIMJEOesiWypEpxTXtB3L9DbOKdQutNESUmYbLl4ohZlWu1DH6dk7KqoPuO0tMhJIwt1-h-qPAejtzFA74u-ZfiwZSjMBH-mhZlz1pffv22z79esTTHnBL1eJj-a9FcTrFd315u7F_LtZqS5G8E9cg-HflpPLqmwgPRs5he17gE0A7Kp</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Case, Lindsay B.</creator><creator>Baird, Michelle A.</creator><creator>Shtengel, Gleb</creator><creator>Campbell, Sharon L.</creator><creator>Hess, Harald F.</creator><creator>Davidson, Michael W.</creator><creator>Waterman, Clare M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20150701</creationdate><title>Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions</title><author>Case, Lindsay B. ; Baird, Michelle A. ; Shtengel, Gleb ; Campbell, Sharon L. ; Hess, Harald F. ; Davidson, Michael W. ; Waterman, Clare M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-d4f995e96c0bd1528a284145a2101be4e1fde564d03bdd3497758ac3748286e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/1</topic><topic>13/106</topic><topic>14/33</topic><topic>14/35</topic><topic>14/63</topic><topic>631/80/79</topic><topic>631/80/79/1236</topic><topic>631/80/79/2027</topic><topic>Actins - chemistry</topic><topic>Actins - metabolism</topic><topic>Biosensors</topic><topic>Blotting, Western</topic><topic>Cancer Research</topic><topic>Cell adhesion</topic><topic>Cell Biology</topic><topic>Cell Line</topic><topic>Cell Line, Tumor</topic><topic>Cellular signal transduction</topic><topic>Cytoskeletal proteins</topic><topic>Developmental Biology</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Focal Adhesions - genetics</topic><topic>Focal Adhesions - metabolism</topic><topic>Genetic aspects</topic><topic>Humans</topic><topic>Integrins - chemistry</topic><topic>Integrins - metabolism</topic><topic>Life Sciences</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Nanostructures</topic><topic>Nanotechnology - methods</topic><topic>Paxillin - chemistry</topic><topic>Paxillin - genetics</topic><topic>Paxillin - metabolism</topic><topic>Photoactivation</topic><topic>Properties</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>RNA Interference</topic><topic>Stem Cells</topic><topic>Talin - chemistry</topic><topic>Talin - genetics</topic><topic>Talin - metabolism</topic><topic>Vinculin - chemistry</topic><topic>Vinculin - genetics</topic><topic>Vinculin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Case, Lindsay B.</creatorcontrib><creatorcontrib>Baird, Michelle A.</creatorcontrib><creatorcontrib>Shtengel, Gleb</creatorcontrib><creatorcontrib>Campbell, Sharon L.</creatorcontrib><creatorcontrib>Hess, Harald F.</creatorcontrib><creatorcontrib>Davidson, Michael W.</creatorcontrib><creatorcontrib>Waterman, Clare M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Case, Lindsay B.</au><au>Baird, Michelle A.</au><au>Shtengel, Gleb</au><au>Campbell, Sharon L.</au><au>Hess, Harald F.</au><au>Davidson, Michael W.</au><au>Waterman, Clare M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>17</volume><issue>7</issue><spage>880</spage><epage>892</epage><pages>880-892</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Focal adhesions (FAs) link the extracellular matrix to the actin cytoskeleton to mediate cell adhesion, migration, mechanosensing and signalling. FAs have conserved nanoscale protein organization, suggesting that the position of proteins within FAs regulates their activity and function. Vinculin binds different FA proteins to mediate distinct cellular functions, but how vinculin’s interactions are spatiotemporally organized within FAs is unknown. Using interferometric photoactivation localization super-resolution microscopy to assay vinculin nanoscale localization and a FRET biosensor to assay vinculin conformation, we found that upward repositioning within the FA during FA maturation facilitates vinculin activation and mechanical reinforcement of FAs. Inactive vinculin localizes to the lower integrin signalling layer in FAs by binding to phospho-paxillin. Talin binding activates vinculin and targets active vinculin higher in FAs where vinculin can engage retrograde actin flow. Thus, specific protein interactions are spatially segregated within FAs at the nanoscale to regulate vinculin activation and function.
Waterman and colleagues use super-resolution microscopy and biosensor technology to characterize the spatiotemporal regulation of the protein interactions within focal adhesions that control vinculin activation and function during focal adhesion maturation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26053221</pmid><doi>10.1038/ncb3180</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1465-7392 |
ispartof | Nature cell biology, 2015-07, Vol.17 (7), p.880-892 |
issn | 1465-7392 1476-4679 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692754424 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 13/1 13/106 14/33 14/35 14/63 631/80/79 631/80/79/1236 631/80/79/2027 Actins - chemistry Actins - metabolism Biosensors Blotting, Western Cancer Research Cell adhesion Cell Biology Cell Line Cell Line, Tumor Cellular signal transduction Cytoskeletal proteins Developmental Biology Fluorescence Resonance Energy Transfer Focal Adhesions - genetics Focal Adhesions - metabolism Genetic aspects Humans Integrins - chemistry Integrins - metabolism Life Sciences Luminescent Proteins - genetics Luminescent Proteins - metabolism Microscopy, Fluorescence - methods Models, Molecular Mutation Nanostructures Nanotechnology - methods Paxillin - chemistry Paxillin - genetics Paxillin - metabolism Photoactivation Properties Protein Binding Protein Structure, Tertiary RNA Interference Stem Cells Talin - chemistry Talin - genetics Talin - metabolism Vinculin - chemistry Vinculin - genetics Vinculin - metabolism |
title | Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanism%20of%20vinculin%20activation%20and%20nanoscale%20spatial%20organization%20in%20focal%20adhesions&rft.jtitle=Nature%20cell%20biology&rft.au=Case,%20Lindsay%20B.&rft.date=2015-07-01&rft.volume=17&rft.issue=7&rft.spage=880&rft.epage=892&rft.pages=880-892&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb3180&rft_dat=%3Cgale_proqu%3EA421524186%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766136945&rft_id=info:pmid/26053221&rft_galeid=A421524186&rfr_iscdi=true |