Composition and emission characterization and computational simulation of silicon rich oxide films obtained by LPCVD
Silicon rich oxide (SRO) is a silicon compatible material that could solve the light emission limitation inherent to bulk silicon. However, not many applications are yet reported, since still much research has to be done. In this paper, SRO superficial films were obtained by low pressure chemical va...
Gespeichert in:
Veröffentlicht in: | Surface and interface analysis 2014-04, Vol.46 (4), p.216-223 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 223 |
---|---|
container_issue | 4 |
container_start_page | 216 |
container_title | Surface and interface analysis |
container_volume | 46 |
creator | Aceves-Mijares, M. Espinosa-Torres, N. D. Flores-Gracia, F. González-Fernández, A. A. López-Estopier, R. Román-López, S. Pedraza, G. Domínguez, C. Morales, A. Falcony, C. |
description | Silicon rich oxide (SRO) is a silicon compatible material that could solve the light emission limitation inherent to bulk silicon. However, not many applications are yet reported, since still much research has to be done. In this paper, SRO superficial films were obtained by low pressure chemical vapor deposition. Structural and optical characterization was done by X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy (FTIR) corroborating that after annealing, the SiO and the Si2O phase clearly increases. Emission of SRO in the range between ultra violet and near‐infrared is determined by photo, electro and cathode luminescence. Assuming that emission is due to agglomerates of Si–O compounds, computational simulations of cyclic chains of SiO were done to calculate the FTIR spectra, emission and HOMO‐LUMO densities. It was found that emission of molecules with less than 10 silicon atoms is not likely to be present in the annealed films. However, for molecules with more than 13 silicon atoms, the emission extends to the visible and near infrared region. The calculated FTIR agrees with the experimental results. Copyright © 2013 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sia.5212 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692417824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692417824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3972-d55372b9934df216ccce8f8d51a22b93b7298351a9b3b95b26921dd48cf1c86f3</originalsourceid><addsrcrecordid>eNqFkdtKxDAQhoMouB7ARyh44001xza51PW0uB7weBnSNMVou1mTFl2f3tSVFQXxauaf-WZg5gdgC8FdBCHeC1btMozwEhggKLJUCMSXwQAiilNMMVoFayE8QQg54dkAtEPXTF2wrXWTRE3KxDQ2hF7oR-WVbo2372rR1ZHu2k-t6iTYpqvnTVdFVVsdU2_1Y-LebGmSytZNSFzRKjsxZVLMkvHV8P5wA6xUqg5m8yuug7vjo9vhaTq-PBkN98epJiLHackYyXEhBKFlhVGmtTa84iVDCscyKXIsOIlKFKQQrMCZwKgsKdcV0jyryDrYme-devfSmdDKeJw2da0mxnVBojhAUc4x_R9lNH4QZ6xHt3-hT67z8R89BXNBM8rR90LtXQjeVHLqbaP8TCIoe6dkdEr2TkU0naOvtjazPzl5M9r_ydvQmrcFr_yzzHKSM_lwcSIPBDk8O7hm8px8ALwuo6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507946481</pqid></control><display><type>article</type><title>Composition and emission characterization and computational simulation of silicon rich oxide films obtained by LPCVD</title><source>Wiley Online Library</source><creator>Aceves-Mijares, M. ; Espinosa-Torres, N. D. ; Flores-Gracia, F. ; González-Fernández, A. A. ; López-Estopier, R. ; Román-López, S. ; Pedraza, G. ; Domínguez, C. ; Morales, A. ; Falcony, C.</creator><creatorcontrib>Aceves-Mijares, M. ; Espinosa-Torres, N. D. ; Flores-Gracia, F. ; González-Fernández, A. A. ; López-Estopier, R. ; Román-López, S. ; Pedraza, G. ; Domínguez, C. ; Morales, A. ; Falcony, C.</creatorcontrib><description>Silicon rich oxide (SRO) is a silicon compatible material that could solve the light emission limitation inherent to bulk silicon. However, not many applications are yet reported, since still much research has to be done. In this paper, SRO superficial films were obtained by low pressure chemical vapor deposition. Structural and optical characterization was done by X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy (FTIR) corroborating that after annealing, the SiO and the Si2O phase clearly increases. Emission of SRO in the range between ultra violet and near‐infrared is determined by photo, electro and cathode luminescence. Assuming that emission is due to agglomerates of Si–O compounds, computational simulations of cyclic chains of SiO were done to calculate the FTIR spectra, emission and HOMO‐LUMO densities. It was found that emission of molecules with less than 10 silicon atoms is not likely to be present in the annealed films. However, for molecules with more than 13 silicon atoms, the emission extends to the visible and near infrared region. The calculated FTIR agrees with the experimental results. Copyright © 2013 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0142-2421</identifier><identifier>EISSN: 1096-9918</identifier><identifier>DOI: 10.1002/sia.5212</identifier><identifier>CODEN: SIANDQ</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Annealing ; Computer simulation ; DFT ; electro and cathode luminescence ; Emission ; Fourier transforms ; Infrared spectroscopy ; Mathematical analysis ; moieties ; photo ; Short range order ; Silicon ; SRO films</subject><ispartof>Surface and interface analysis, 2014-04, Vol.46 (4), p.216-223</ispartof><rights>Copyright © 2013 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3972-d55372b9934df216ccce8f8d51a22b93b7298351a9b3b95b26921dd48cf1c86f3</citedby><cites>FETCH-LOGICAL-c3972-d55372b9934df216ccce8f8d51a22b93b7298351a9b3b95b26921dd48cf1c86f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsia.5212$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsia.5212$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Aceves-Mijares, M.</creatorcontrib><creatorcontrib>Espinosa-Torres, N. D.</creatorcontrib><creatorcontrib>Flores-Gracia, F.</creatorcontrib><creatorcontrib>González-Fernández, A. A.</creatorcontrib><creatorcontrib>López-Estopier, R.</creatorcontrib><creatorcontrib>Román-López, S.</creatorcontrib><creatorcontrib>Pedraza, G.</creatorcontrib><creatorcontrib>Domínguez, C.</creatorcontrib><creatorcontrib>Morales, A.</creatorcontrib><creatorcontrib>Falcony, C.</creatorcontrib><title>Composition and emission characterization and computational simulation of silicon rich oxide films obtained by LPCVD</title><title>Surface and interface analysis</title><addtitle>Surf. Interface Anal</addtitle><description>Silicon rich oxide (SRO) is a silicon compatible material that could solve the light emission limitation inherent to bulk silicon. However, not many applications are yet reported, since still much research has to be done. In this paper, SRO superficial films were obtained by low pressure chemical vapor deposition. Structural and optical characterization was done by X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy (FTIR) corroborating that after annealing, the SiO and the Si2O phase clearly increases. Emission of SRO in the range between ultra violet and near‐infrared is determined by photo, electro and cathode luminescence. Assuming that emission is due to agglomerates of Si–O compounds, computational simulations of cyclic chains of SiO were done to calculate the FTIR spectra, emission and HOMO‐LUMO densities. It was found that emission of molecules with less than 10 silicon atoms is not likely to be present in the annealed films. However, for molecules with more than 13 silicon atoms, the emission extends to the visible and near infrared region. The calculated FTIR agrees with the experimental results. Copyright © 2013 John Wiley & Sons, Ltd.</description><subject>Annealing</subject><subject>Computer simulation</subject><subject>DFT</subject><subject>electro and cathode luminescence</subject><subject>Emission</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Mathematical analysis</subject><subject>moieties</subject><subject>photo</subject><subject>Short range order</subject><subject>Silicon</subject><subject>SRO films</subject><issn>0142-2421</issn><issn>1096-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkdtKxDAQhoMouB7ARyh44001xza51PW0uB7weBnSNMVou1mTFl2f3tSVFQXxauaf-WZg5gdgC8FdBCHeC1btMozwEhggKLJUCMSXwQAiilNMMVoFayE8QQg54dkAtEPXTF2wrXWTRE3KxDQ2hF7oR-WVbo2372rR1ZHu2k-t6iTYpqvnTVdFVVsdU2_1Y-LebGmSytZNSFzRKjsxZVLMkvHV8P5wA6xUqg5m8yuug7vjo9vhaTq-PBkN98epJiLHackYyXEhBKFlhVGmtTa84iVDCscyKXIsOIlKFKQQrMCZwKgsKdcV0jyryDrYme-devfSmdDKeJw2da0mxnVBojhAUc4x_R9lNH4QZ6xHt3-hT67z8R89BXNBM8rR90LtXQjeVHLqbaP8TCIoe6dkdEr2TkU0naOvtjazPzl5M9r_ydvQmrcFr_yzzHKSM_lwcSIPBDk8O7hm8px8ALwuo6U</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Aceves-Mijares, M.</creator><creator>Espinosa-Torres, N. D.</creator><creator>Flores-Gracia, F.</creator><creator>González-Fernández, A. A.</creator><creator>López-Estopier, R.</creator><creator>Román-López, S.</creator><creator>Pedraza, G.</creator><creator>Domínguez, C.</creator><creator>Morales, A.</creator><creator>Falcony, C.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201404</creationdate><title>Composition and emission characterization and computational simulation of silicon rich oxide films obtained by LPCVD</title><author>Aceves-Mijares, M. ; Espinosa-Torres, N. D. ; Flores-Gracia, F. ; González-Fernández, A. A. ; López-Estopier, R. ; Román-López, S. ; Pedraza, G. ; Domínguez, C. ; Morales, A. ; Falcony, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3972-d55372b9934df216ccce8f8d51a22b93b7298351a9b3b95b26921dd48cf1c86f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Annealing</topic><topic>Computer simulation</topic><topic>DFT</topic><topic>electro and cathode luminescence</topic><topic>Emission</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Mathematical analysis</topic><topic>moieties</topic><topic>photo</topic><topic>Short range order</topic><topic>Silicon</topic><topic>SRO films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aceves-Mijares, M.</creatorcontrib><creatorcontrib>Espinosa-Torres, N. D.</creatorcontrib><creatorcontrib>Flores-Gracia, F.</creatorcontrib><creatorcontrib>González-Fernández, A. A.</creatorcontrib><creatorcontrib>López-Estopier, R.</creatorcontrib><creatorcontrib>Román-López, S.</creatorcontrib><creatorcontrib>Pedraza, G.</creatorcontrib><creatorcontrib>Domínguez, C.</creatorcontrib><creatorcontrib>Morales, A.</creatorcontrib><creatorcontrib>Falcony, C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface and interface analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aceves-Mijares, M.</au><au>Espinosa-Torres, N. D.</au><au>Flores-Gracia, F.</au><au>González-Fernández, A. A.</au><au>López-Estopier, R.</au><au>Román-López, S.</au><au>Pedraza, G.</au><au>Domínguez, C.</au><au>Morales, A.</au><au>Falcony, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition and emission characterization and computational simulation of silicon rich oxide films obtained by LPCVD</atitle><jtitle>Surface and interface analysis</jtitle><addtitle>Surf. Interface Anal</addtitle><date>2014-04</date><risdate>2014</risdate><volume>46</volume><issue>4</issue><spage>216</spage><epage>223</epage><pages>216-223</pages><issn>0142-2421</issn><eissn>1096-9918</eissn><coden>SIANDQ</coden><abstract>Silicon rich oxide (SRO) is a silicon compatible material that could solve the light emission limitation inherent to bulk silicon. However, not many applications are yet reported, since still much research has to be done. In this paper, SRO superficial films were obtained by low pressure chemical vapor deposition. Structural and optical characterization was done by X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy (FTIR) corroborating that after annealing, the SiO and the Si2O phase clearly increases. Emission of SRO in the range between ultra violet and near‐infrared is determined by photo, electro and cathode luminescence. Assuming that emission is due to agglomerates of Si–O compounds, computational simulations of cyclic chains of SiO were done to calculate the FTIR spectra, emission and HOMO‐LUMO densities. It was found that emission of molecules with less than 10 silicon atoms is not likely to be present in the annealed films. However, for molecules with more than 13 silicon atoms, the emission extends to the visible and near infrared region. The calculated FTIR agrees with the experimental results. Copyright © 2013 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/sia.5212</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-2421 |
ispartof | Surface and interface analysis, 2014-04, Vol.46 (4), p.216-223 |
issn | 0142-2421 1096-9918 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692417824 |
source | Wiley Online Library |
subjects | Annealing Computer simulation DFT electro and cathode luminescence Emission Fourier transforms Infrared spectroscopy Mathematical analysis moieties photo Short range order Silicon SRO films |
title | Composition and emission characterization and computational simulation of silicon rich oxide films obtained by LPCVD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition%20and%20emission%20characterization%20and%20computational%20simulation%20of%20silicon%20rich%20oxide%20films%20obtained%20by%20LPCVD&rft.jtitle=Surface%20and%20interface%20analysis&rft.au=Aceves-Mijares,%20M.&rft.date=2014-04&rft.volume=46&rft.issue=4&rft.spage=216&rft.epage=223&rft.pages=216-223&rft.issn=0142-2421&rft.eissn=1096-9918&rft.coden=SIANDQ&rft_id=info:doi/10.1002/sia.5212&rft_dat=%3Cproquest_cross%3E1692417824%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507946481&rft_id=info:pmid/&rfr_iscdi=true |