Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications

Multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings were deposited on Ti6Al4V alloy by co-sputtering of Ti, Zr, Nb, Hf and Ta metallic targets in reactive atmosphere. The coatings were analyzed for elemental and phase compositions, crystalline structure, morphology, residual stress, har...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2012-06, Vol.10, p.197-205
Hauptverfasser: Braic, V., Balaceanu, M., Braic, M., Vladescu, A., Panseri, S., Russo, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 205
container_issue
container_start_page 197
container_title Journal of the mechanical behavior of biomedical materials
container_volume 10
creator Braic, V.
Balaceanu, M.
Braic, M.
Vladescu, A.
Panseri, S.
Russo, A.
description Multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings were deposited on Ti6Al4V alloy by co-sputtering of Ti, Zr, Nb, Hf and Ta metallic targets in reactive atmosphere. The coatings were analyzed for elemental and phase compositions, crystalline structure, morphology, residual stress, hardness, friction performance, wear–corrosion resistance and cell viability. For all the films, only simple fcc solid solutions with (111) preferred orientations were found, with crystallite sizes in the range 7.2–13.5 nm. The coatings were subjected to compressive stress, with values ranging from 0.8 to 1.6 GPa. The carbide coating with the highest carbon content (carbon/metal ≈1.3) exhibited the highest hardness of about 31 GPa, the best friction behavior (μ = 0.12) and the highest wear resistance (wear rate K=0.2×10−6mm3N−1m−1), when testing in simulated body fluids (SBFs). Cell viability tests proved that the osteoblast cells were adherent to the coated substrates, and a very high percentage of live cells were observed on sample surfaces, after 72 h incubation time. ► (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings were prepared by magnetron sputtering. ► The coatings exhibit simple fcc solid solutions with (111) preferred orientations. ► The carbide coatings with C/metal ratio ≈1.4 show superior tribological performance. ► MG63 osteoblast-like cultured cells were adherent to all the coatings. ► After 72 h incubation, high percentages of live cells were observed on surfaces.
doi_str_mv 10.1016/j.jmbbm.2012.02.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692415932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751616112000719</els_id><sourcerecordid>1009128664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607t-aef2851f13ff7a618b711e1aa445d2acb0fa80939883947302ac993121c802ed3</originalsourceid><addsrcrecordid>eNqNkkFr3DAQhUVpadKkvyAQfEwP3s5ItiwdcihL2hRCctlcchGyLCVabMuRvIXm11fupoVemsCAhuHTm4H3CDlBWCEg_7xdbYe2HVYUkK5gKXhDDlE0ogQU8Db3TY0lR44H5ENKWwAOIMR7ckBpTaFieEim9YOO2sw2-ic9-zAWwRXDrp99OUU_Gj_pvrS9Hew4F2cbfxev20u30Z-uCz12_0zWhQlZYrxPhQuxaH0YbOeN7gs9TX1uFvl0TN453Sf78fk9IrdfLzbry_Lq5tv39Zer0nBo5lJbR0WNDplzjeYo2gbRotZVVXdUmxacFiCZFILJqmGQZ1IypGgEUNuxI3K2151ieNzZNKvBJ2P7Xo827JJCLmmFtWT0ZbRmIKWoOHsZBUolMhDwKlRwkIK_AgWJGeZVRtkeNTGkFK1T2aZBx58ZUkss1Fb9joVaYqFgqeWW0-cFuzab8vfPnxxk4HwP2GzJD2-jSsbb0WQDozWz6oL_74JfPPHHJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009128664</pqid></control><display><type>article</type><title>Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Braic, V. ; Balaceanu, M. ; Braic, M. ; Vladescu, A. ; Panseri, S. ; Russo, A.</creator><creatorcontrib>Braic, V. ; Balaceanu, M. ; Braic, M. ; Vladescu, A. ; Panseri, S. ; Russo, A.</creatorcontrib><description>Multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings were deposited on Ti6Al4V alloy by co-sputtering of Ti, Zr, Nb, Hf and Ta metallic targets in reactive atmosphere. The coatings were analyzed for elemental and phase compositions, crystalline structure, morphology, residual stress, hardness, friction performance, wear–corrosion resistance and cell viability. For all the films, only simple fcc solid solutions with (111) preferred orientations were found, with crystallite sizes in the range 7.2–13.5 nm. The coatings were subjected to compressive stress, with values ranging from 0.8 to 1.6 GPa. The carbide coating with the highest carbon content (carbon/metal ≈1.3) exhibited the highest hardness of about 31 GPa, the best friction behavior (μ = 0.12) and the highest wear resistance (wear rate K=0.2×10−6mm3N−1m−1), when testing in simulated body fluids (SBFs). Cell viability tests proved that the osteoblast cells were adherent to the coated substrates, and a very high percentage of live cells were observed on sample surfaces, after 72 h incubation time. ► (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings were prepared by magnetron sputtering. ► The coatings exhibit simple fcc solid solutions with (111) preferred orientations. ► The carbide coatings with C/metal ratio ≈1.4 show superior tribological performance. ► MG63 osteoblast-like cultured cells were adherent to all the coatings. ► After 72 h incubation, high percentages of live cells were observed on surfaces.</description><identifier>ISSN: 1751-6161</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2012.02.020</identifier><identifier>PMID: 22520431</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Alloys - chemistry ; Alloys - metabolism ; Alloys - toxicity ; Biomedical materials ; Biomimetic Materials - metabolism ; Body Fluids - metabolism ; Carbon ; Cell Line, Tumor ; Cell Survival - drug effects ; Cell viability ; Coated Materials, Biocompatible - chemistry ; Coated Materials, Biocompatible - metabolism ; Coated Materials, Biocompatible - toxicity ; Coatings ; Compressive properties ; Corrosion ; Corrosion–wear resistance ; Friction ; Hafnium ; Hafnium - chemistry ; Hardness ; Humans ; Magnetron sputtering ; Mechanical Phenomena ; Microstructure ; Multi-principal-element coatings ; Niobium - chemistry ; Surface Properties ; Tantalum - chemistry ; Titanium - chemistry ; Titanium base alloys ; Viability ; Zirconium - chemistry</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2012-06, Vol.10, p.197-205</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c607t-aef2851f13ff7a618b711e1aa445d2acb0fa80939883947302ac993121c802ed3</citedby><cites>FETCH-LOGICAL-c607t-aef2851f13ff7a618b711e1aa445d2acb0fa80939883947302ac993121c802ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmbbm.2012.02.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22520431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Braic, V.</creatorcontrib><creatorcontrib>Balaceanu, M.</creatorcontrib><creatorcontrib>Braic, M.</creatorcontrib><creatorcontrib>Vladescu, A.</creatorcontrib><creatorcontrib>Panseri, S.</creatorcontrib><creatorcontrib>Russo, A.</creatorcontrib><title>Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>Multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings were deposited on Ti6Al4V alloy by co-sputtering of Ti, Zr, Nb, Hf and Ta metallic targets in reactive atmosphere. The coatings were analyzed for elemental and phase compositions, crystalline structure, morphology, residual stress, hardness, friction performance, wear–corrosion resistance and cell viability. For all the films, only simple fcc solid solutions with (111) preferred orientations were found, with crystallite sizes in the range 7.2–13.5 nm. The coatings were subjected to compressive stress, with values ranging from 0.8 to 1.6 GPa. The carbide coating with the highest carbon content (carbon/metal ≈1.3) exhibited the highest hardness of about 31 GPa, the best friction behavior (μ = 0.12) and the highest wear resistance (wear rate K=0.2×10−6mm3N−1m−1), when testing in simulated body fluids (SBFs). Cell viability tests proved that the osteoblast cells were adherent to the coated substrates, and a very high percentage of live cells were observed on sample surfaces, after 72 h incubation time. ► (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings were prepared by magnetron sputtering. ► The coatings exhibit simple fcc solid solutions with (111) preferred orientations. ► The carbide coatings with C/metal ratio ≈1.4 show superior tribological performance. ► MG63 osteoblast-like cultured cells were adherent to all the coatings. ► After 72 h incubation, high percentages of live cells were observed on surfaces.</description><subject>Alloys - chemistry</subject><subject>Alloys - metabolism</subject><subject>Alloys - toxicity</subject><subject>Biomedical materials</subject><subject>Biomimetic Materials - metabolism</subject><subject>Body Fluids - metabolism</subject><subject>Carbon</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Cell viability</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coated Materials, Biocompatible - metabolism</subject><subject>Coated Materials, Biocompatible - toxicity</subject><subject>Coatings</subject><subject>Compressive properties</subject><subject>Corrosion</subject><subject>Corrosion–wear resistance</subject><subject>Friction</subject><subject>Hafnium</subject><subject>Hafnium - chemistry</subject><subject>Hardness</subject><subject>Humans</subject><subject>Magnetron sputtering</subject><subject>Mechanical Phenomena</subject><subject>Microstructure</subject><subject>Multi-principal-element coatings</subject><subject>Niobium - chemistry</subject><subject>Surface Properties</subject><subject>Tantalum - chemistry</subject><subject>Titanium - chemistry</subject><subject>Titanium base alloys</subject><subject>Viability</subject><subject>Zirconium - chemistry</subject><issn>1751-6161</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkkFr3DAQhUVpadKkvyAQfEwP3s5ItiwdcihL2hRCctlcchGyLCVabMuRvIXm11fupoVemsCAhuHTm4H3CDlBWCEg_7xdbYe2HVYUkK5gKXhDDlE0ogQU8Db3TY0lR44H5ENKWwAOIMR7ckBpTaFieEim9YOO2sw2-ic9-zAWwRXDrp99OUU_Gj_pvrS9Hew4F2cbfxev20u30Z-uCz12_0zWhQlZYrxPhQuxaH0YbOeN7gs9TX1uFvl0TN453Sf78fk9IrdfLzbry_Lq5tv39Zer0nBo5lJbR0WNDplzjeYo2gbRotZVVXdUmxacFiCZFILJqmGQZ1IypGgEUNuxI3K2151ieNzZNKvBJ2P7Xo827JJCLmmFtWT0ZbRmIKWoOHsZBUolMhDwKlRwkIK_AgWJGeZVRtkeNTGkFK1T2aZBx58ZUkss1Fb9joVaYqFgqeWW0-cFuzab8vfPnxxk4HwP2GzJD2-jSsbb0WQDozWz6oL_74JfPPHHJw</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Braic, V.</creator><creator>Balaceanu, M.</creator><creator>Braic, M.</creator><creator>Vladescu, A.</creator><creator>Panseri, S.</creator><creator>Russo, A.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SE</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20120601</creationdate><title>Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications</title><author>Braic, V. ; Balaceanu, M. ; Braic, M. ; Vladescu, A. ; Panseri, S. ; Russo, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607t-aef2851f13ff7a618b711e1aa445d2acb0fa80939883947302ac993121c802ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alloys - chemistry</topic><topic>Alloys - metabolism</topic><topic>Alloys - toxicity</topic><topic>Biomedical materials</topic><topic>Biomimetic Materials - metabolism</topic><topic>Body Fluids - metabolism</topic><topic>Carbon</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Cell viability</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coated Materials, Biocompatible - metabolism</topic><topic>Coated Materials, Biocompatible - toxicity</topic><topic>Coatings</topic><topic>Compressive properties</topic><topic>Corrosion</topic><topic>Corrosion–wear resistance</topic><topic>Friction</topic><topic>Hafnium</topic><topic>Hafnium - chemistry</topic><topic>Hardness</topic><topic>Humans</topic><topic>Magnetron sputtering</topic><topic>Mechanical Phenomena</topic><topic>Microstructure</topic><topic>Multi-principal-element coatings</topic><topic>Niobium - chemistry</topic><topic>Surface Properties</topic><topic>Tantalum - chemistry</topic><topic>Titanium - chemistry</topic><topic>Titanium base alloys</topic><topic>Viability</topic><topic>Zirconium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braic, V.</creatorcontrib><creatorcontrib>Balaceanu, M.</creatorcontrib><creatorcontrib>Braic, M.</creatorcontrib><creatorcontrib>Vladescu, A.</creatorcontrib><creatorcontrib>Panseri, S.</creatorcontrib><creatorcontrib>Russo, A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braic, V.</au><au>Balaceanu, M.</au><au>Braic, M.</au><au>Vladescu, A.</au><au>Panseri, S.</au><au>Russo, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>10</volume><spage>197</spage><epage>205</epage><pages>197-205</pages><issn>1751-6161</issn><eissn>1878-0180</eissn><abstract>Multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings were deposited on Ti6Al4V alloy by co-sputtering of Ti, Zr, Nb, Hf and Ta metallic targets in reactive atmosphere. The coatings were analyzed for elemental and phase compositions, crystalline structure, morphology, residual stress, hardness, friction performance, wear–corrosion resistance and cell viability. For all the films, only simple fcc solid solutions with (111) preferred orientations were found, with crystallite sizes in the range 7.2–13.5 nm. The coatings were subjected to compressive stress, with values ranging from 0.8 to 1.6 GPa. The carbide coating with the highest carbon content (carbon/metal ≈1.3) exhibited the highest hardness of about 31 GPa, the best friction behavior (μ = 0.12) and the highest wear resistance (wear rate K=0.2×10−6mm3N−1m−1), when testing in simulated body fluids (SBFs). Cell viability tests proved that the osteoblast cells were adherent to the coated substrates, and a very high percentage of live cells were observed on sample surfaces, after 72 h incubation time. ► (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings were prepared by magnetron sputtering. ► The coatings exhibit simple fcc solid solutions with (111) preferred orientations. ► The carbide coatings with C/metal ratio ≈1.4 show superior tribological performance. ► MG63 osteoblast-like cultured cells were adherent to all the coatings. ► After 72 h incubation, high percentages of live cells were observed on surfaces.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>22520431</pmid><doi>10.1016/j.jmbbm.2012.02.020</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1751-6161
ispartof Journal of the mechanical behavior of biomedical materials, 2012-06, Vol.10, p.197-205
issn 1751-6161
1878-0180
language eng
recordid cdi_proquest_miscellaneous_1692415932
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Alloys - chemistry
Alloys - metabolism
Alloys - toxicity
Biomedical materials
Biomimetic Materials - metabolism
Body Fluids - metabolism
Carbon
Cell Line, Tumor
Cell Survival - drug effects
Cell viability
Coated Materials, Biocompatible - chemistry
Coated Materials, Biocompatible - metabolism
Coated Materials, Biocompatible - toxicity
Coatings
Compressive properties
Corrosion
Corrosion–wear resistance
Friction
Hafnium
Hafnium - chemistry
Hardness
Humans
Magnetron sputtering
Mechanical Phenomena
Microstructure
Multi-principal-element coatings
Niobium - chemistry
Surface Properties
Tantalum - chemistry
Titanium - chemistry
Titanium base alloys
Viability
Zirconium - chemistry
title Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20multi-principal-element%20(TiZrNbHfTa)N%20and%20(TiZrNbHfTa)C%20coatings%20for%20biomedical%20applications&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Braic,%20V.&rft.date=2012-06-01&rft.volume=10&rft.spage=197&rft.epage=205&rft.pages=197-205&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2012.02.020&rft_dat=%3Cproquest_cross%3E1009128664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1009128664&rft_id=info:pmid/22520431&rft_els_id=S1751616112000719&rfr_iscdi=true