Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications
Multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings were deposited on Ti6Al4V alloy by co-sputtering of Ti, Zr, Nb, Hf and Ta metallic targets in reactive atmosphere. The coatings were analyzed for elemental and phase compositions, crystalline structure, morphology, residual stress, har...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2012-06, Vol.10, p.197-205 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 205 |
---|---|
container_issue | |
container_start_page | 197 |
container_title | Journal of the mechanical behavior of biomedical materials |
container_volume | 10 |
creator | Braic, V. Balaceanu, M. Braic, M. Vladescu, A. Panseri, S. Russo, A. |
description | Multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings were deposited on Ti6Al4V alloy by co-sputtering of Ti, Zr, Nb, Hf and Ta metallic targets in reactive atmosphere. The coatings were analyzed for elemental and phase compositions, crystalline structure, morphology, residual stress, hardness, friction performance, wear–corrosion resistance and cell viability. For all the films, only simple fcc solid solutions with (111) preferred orientations were found, with crystallite sizes in the range 7.2–13.5 nm. The coatings were subjected to compressive stress, with values ranging from 0.8 to 1.6 GPa. The carbide coating with the highest carbon content (carbon/metal ≈1.3) exhibited the highest hardness of about 31 GPa, the best friction behavior (μ = 0.12) and the highest wear resistance (wear rate K=0.2×10−6mm3N−1m−1), when testing in simulated body fluids (SBFs). Cell viability tests proved that the osteoblast cells were adherent to the coated substrates, and a very high percentage of live cells were observed on sample surfaces, after 72 h incubation time.
► (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings were prepared by magnetron sputtering. ► The coatings exhibit simple fcc solid solutions with (111) preferred orientations. ► The carbide coatings with C/metal ratio ≈1.4 show superior tribological performance. ► MG63 osteoblast-like cultured cells were adherent to all the coatings. ► After 72 h incubation, high percentages of live cells were observed on surfaces. |
doi_str_mv | 10.1016/j.jmbbm.2012.02.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692415932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751616112000719</els_id><sourcerecordid>1009128664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607t-aef2851f13ff7a618b711e1aa445d2acb0fa80939883947302ac993121c802ed3</originalsourceid><addsrcrecordid>eNqNkkFr3DAQhUVpadKkvyAQfEwP3s5ItiwdcihL2hRCctlcchGyLCVabMuRvIXm11fupoVemsCAhuHTm4H3CDlBWCEg_7xdbYe2HVYUkK5gKXhDDlE0ogQU8Db3TY0lR44H5ENKWwAOIMR7ckBpTaFieEim9YOO2sw2-ic9-zAWwRXDrp99OUU_Gj_pvrS9Hew4F2cbfxev20u30Z-uCz12_0zWhQlZYrxPhQuxaH0YbOeN7gs9TX1uFvl0TN453Sf78fk9IrdfLzbry_Lq5tv39Zer0nBo5lJbR0WNDplzjeYo2gbRotZVVXdUmxacFiCZFILJqmGQZ1IypGgEUNuxI3K2151ieNzZNKvBJ2P7Xo827JJCLmmFtWT0ZbRmIKWoOHsZBUolMhDwKlRwkIK_AgWJGeZVRtkeNTGkFK1T2aZBx58ZUkss1Fb9joVaYqFgqeWW0-cFuzab8vfPnxxk4HwP2GzJD2-jSsbb0WQDozWz6oL_74JfPPHHJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009128664</pqid></control><display><type>article</type><title>Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Braic, V. ; Balaceanu, M. ; Braic, M. ; Vladescu, A. ; Panseri, S. ; Russo, A.</creator><creatorcontrib>Braic, V. ; Balaceanu, M. ; Braic, M. ; Vladescu, A. ; Panseri, S. ; Russo, A.</creatorcontrib><description>Multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings were deposited on Ti6Al4V alloy by co-sputtering of Ti, Zr, Nb, Hf and Ta metallic targets in reactive atmosphere. The coatings were analyzed for elemental and phase compositions, crystalline structure, morphology, residual stress, hardness, friction performance, wear–corrosion resistance and cell viability. For all the films, only simple fcc solid solutions with (111) preferred orientations were found, with crystallite sizes in the range 7.2–13.5 nm. The coatings were subjected to compressive stress, with values ranging from 0.8 to 1.6 GPa. The carbide coating with the highest carbon content (carbon/metal ≈1.3) exhibited the highest hardness of about 31 GPa, the best friction behavior (μ = 0.12) and the highest wear resistance (wear rate K=0.2×10−6mm3N−1m−1), when testing in simulated body fluids (SBFs). Cell viability tests proved that the osteoblast cells were adherent to the coated substrates, and a very high percentage of live cells were observed on sample surfaces, after 72 h incubation time.
► (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings were prepared by magnetron sputtering. ► The coatings exhibit simple fcc solid solutions with (111) preferred orientations. ► The carbide coatings with C/metal ratio ≈1.4 show superior tribological performance. ► MG63 osteoblast-like cultured cells were adherent to all the coatings. ► After 72 h incubation, high percentages of live cells were observed on surfaces.</description><identifier>ISSN: 1751-6161</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2012.02.020</identifier><identifier>PMID: 22520431</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Alloys - chemistry ; Alloys - metabolism ; Alloys - toxicity ; Biomedical materials ; Biomimetic Materials - metabolism ; Body Fluids - metabolism ; Carbon ; Cell Line, Tumor ; Cell Survival - drug effects ; Cell viability ; Coated Materials, Biocompatible - chemistry ; Coated Materials, Biocompatible - metabolism ; Coated Materials, Biocompatible - toxicity ; Coatings ; Compressive properties ; Corrosion ; Corrosion–wear resistance ; Friction ; Hafnium ; Hafnium - chemistry ; Hardness ; Humans ; Magnetron sputtering ; Mechanical Phenomena ; Microstructure ; Multi-principal-element coatings ; Niobium - chemistry ; Surface Properties ; Tantalum - chemistry ; Titanium - chemistry ; Titanium base alloys ; Viability ; Zirconium - chemistry</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2012-06, Vol.10, p.197-205</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c607t-aef2851f13ff7a618b711e1aa445d2acb0fa80939883947302ac993121c802ed3</citedby><cites>FETCH-LOGICAL-c607t-aef2851f13ff7a618b711e1aa445d2acb0fa80939883947302ac993121c802ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmbbm.2012.02.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22520431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Braic, V.</creatorcontrib><creatorcontrib>Balaceanu, M.</creatorcontrib><creatorcontrib>Braic, M.</creatorcontrib><creatorcontrib>Vladescu, A.</creatorcontrib><creatorcontrib>Panseri, S.</creatorcontrib><creatorcontrib>Russo, A.</creatorcontrib><title>Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>Multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings were deposited on Ti6Al4V alloy by co-sputtering of Ti, Zr, Nb, Hf and Ta metallic targets in reactive atmosphere. The coatings were analyzed for elemental and phase compositions, crystalline structure, morphology, residual stress, hardness, friction performance, wear–corrosion resistance and cell viability. For all the films, only simple fcc solid solutions with (111) preferred orientations were found, with crystallite sizes in the range 7.2–13.5 nm. The coatings were subjected to compressive stress, with values ranging from 0.8 to 1.6 GPa. The carbide coating with the highest carbon content (carbon/metal ≈1.3) exhibited the highest hardness of about 31 GPa, the best friction behavior (μ = 0.12) and the highest wear resistance (wear rate K=0.2×10−6mm3N−1m−1), when testing in simulated body fluids (SBFs). Cell viability tests proved that the osteoblast cells were adherent to the coated substrates, and a very high percentage of live cells were observed on sample surfaces, after 72 h incubation time.
► (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings were prepared by magnetron sputtering. ► The coatings exhibit simple fcc solid solutions with (111) preferred orientations. ► The carbide coatings with C/metal ratio ≈1.4 show superior tribological performance. ► MG63 osteoblast-like cultured cells were adherent to all the coatings. ► After 72 h incubation, high percentages of live cells were observed on surfaces.</description><subject>Alloys - chemistry</subject><subject>Alloys - metabolism</subject><subject>Alloys - toxicity</subject><subject>Biomedical materials</subject><subject>Biomimetic Materials - metabolism</subject><subject>Body Fluids - metabolism</subject><subject>Carbon</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Cell viability</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coated Materials, Biocompatible - metabolism</subject><subject>Coated Materials, Biocompatible - toxicity</subject><subject>Coatings</subject><subject>Compressive properties</subject><subject>Corrosion</subject><subject>Corrosion–wear resistance</subject><subject>Friction</subject><subject>Hafnium</subject><subject>Hafnium - chemistry</subject><subject>Hardness</subject><subject>Humans</subject><subject>Magnetron sputtering</subject><subject>Mechanical Phenomena</subject><subject>Microstructure</subject><subject>Multi-principal-element coatings</subject><subject>Niobium - chemistry</subject><subject>Surface Properties</subject><subject>Tantalum - chemistry</subject><subject>Titanium - chemistry</subject><subject>Titanium base alloys</subject><subject>Viability</subject><subject>Zirconium - chemistry</subject><issn>1751-6161</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkkFr3DAQhUVpadKkvyAQfEwP3s5ItiwdcihL2hRCctlcchGyLCVabMuRvIXm11fupoVemsCAhuHTm4H3CDlBWCEg_7xdbYe2HVYUkK5gKXhDDlE0ogQU8Db3TY0lR44H5ENKWwAOIMR7ckBpTaFieEim9YOO2sw2-ic9-zAWwRXDrp99OUU_Gj_pvrS9Hew4F2cbfxev20u30Z-uCz12_0zWhQlZYrxPhQuxaH0YbOeN7gs9TX1uFvl0TN453Sf78fk9IrdfLzbry_Lq5tv39Zer0nBo5lJbR0WNDplzjeYo2gbRotZVVXdUmxacFiCZFILJqmGQZ1IypGgEUNuxI3K2151ieNzZNKvBJ2P7Xo827JJCLmmFtWT0ZbRmIKWoOHsZBUolMhDwKlRwkIK_AgWJGeZVRtkeNTGkFK1T2aZBx58ZUkss1Fb9joVaYqFgqeWW0-cFuzab8vfPnxxk4HwP2GzJD2-jSsbb0WQDozWz6oL_74JfPPHHJw</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Braic, V.</creator><creator>Balaceanu, M.</creator><creator>Braic, M.</creator><creator>Vladescu, A.</creator><creator>Panseri, S.</creator><creator>Russo, A.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SE</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20120601</creationdate><title>Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications</title><author>Braic, V. ; Balaceanu, M. ; Braic, M. ; Vladescu, A. ; Panseri, S. ; Russo, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607t-aef2851f13ff7a618b711e1aa445d2acb0fa80939883947302ac993121c802ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alloys - chemistry</topic><topic>Alloys - metabolism</topic><topic>Alloys - toxicity</topic><topic>Biomedical materials</topic><topic>Biomimetic Materials - metabolism</topic><topic>Body Fluids - metabolism</topic><topic>Carbon</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Cell viability</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coated Materials, Biocompatible - metabolism</topic><topic>Coated Materials, Biocompatible - toxicity</topic><topic>Coatings</topic><topic>Compressive properties</topic><topic>Corrosion</topic><topic>Corrosion–wear resistance</topic><topic>Friction</topic><topic>Hafnium</topic><topic>Hafnium - chemistry</topic><topic>Hardness</topic><topic>Humans</topic><topic>Magnetron sputtering</topic><topic>Mechanical Phenomena</topic><topic>Microstructure</topic><topic>Multi-principal-element coatings</topic><topic>Niobium - chemistry</topic><topic>Surface Properties</topic><topic>Tantalum - chemistry</topic><topic>Titanium - chemistry</topic><topic>Titanium base alloys</topic><topic>Viability</topic><topic>Zirconium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braic, V.</creatorcontrib><creatorcontrib>Balaceanu, M.</creatorcontrib><creatorcontrib>Braic, M.</creatorcontrib><creatorcontrib>Vladescu, A.</creatorcontrib><creatorcontrib>Panseri, S.</creatorcontrib><creatorcontrib>Russo, A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braic, V.</au><au>Balaceanu, M.</au><au>Braic, M.</au><au>Vladescu, A.</au><au>Panseri, S.</au><au>Russo, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>10</volume><spage>197</spage><epage>205</epage><pages>197-205</pages><issn>1751-6161</issn><eissn>1878-0180</eissn><abstract>Multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings were deposited on Ti6Al4V alloy by co-sputtering of Ti, Zr, Nb, Hf and Ta metallic targets in reactive atmosphere. The coatings were analyzed for elemental and phase compositions, crystalline structure, morphology, residual stress, hardness, friction performance, wear–corrosion resistance and cell viability. For all the films, only simple fcc solid solutions with (111) preferred orientations were found, with crystallite sizes in the range 7.2–13.5 nm. The coatings were subjected to compressive stress, with values ranging from 0.8 to 1.6 GPa. The carbide coating with the highest carbon content (carbon/metal ≈1.3) exhibited the highest hardness of about 31 GPa, the best friction behavior (μ = 0.12) and the highest wear resistance (wear rate K=0.2×10−6mm3N−1m−1), when testing in simulated body fluids (SBFs). Cell viability tests proved that the osteoblast cells were adherent to the coated substrates, and a very high percentage of live cells were observed on sample surfaces, after 72 h incubation time.
► (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings were prepared by magnetron sputtering. ► The coatings exhibit simple fcc solid solutions with (111) preferred orientations. ► The carbide coatings with C/metal ratio ≈1.4 show superior tribological performance. ► MG63 osteoblast-like cultured cells were adherent to all the coatings. ► After 72 h incubation, high percentages of live cells were observed on surfaces.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>22520431</pmid><doi>10.1016/j.jmbbm.2012.02.020</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-6161 |
ispartof | Journal of the mechanical behavior of biomedical materials, 2012-06, Vol.10, p.197-205 |
issn | 1751-6161 1878-0180 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692415932 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Alloys - chemistry Alloys - metabolism Alloys - toxicity Biomedical materials Biomimetic Materials - metabolism Body Fluids - metabolism Carbon Cell Line, Tumor Cell Survival - drug effects Cell viability Coated Materials, Biocompatible - chemistry Coated Materials, Biocompatible - metabolism Coated Materials, Biocompatible - toxicity Coatings Compressive properties Corrosion Corrosion–wear resistance Friction Hafnium Hafnium - chemistry Hardness Humans Magnetron sputtering Mechanical Phenomena Microstructure Multi-principal-element coatings Niobium - chemistry Surface Properties Tantalum - chemistry Titanium - chemistry Titanium base alloys Viability Zirconium - chemistry |
title | Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20multi-principal-element%20(TiZrNbHfTa)N%20and%20(TiZrNbHfTa)C%20coatings%20for%20biomedical%20applications&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Braic,%20V.&rft.date=2012-06-01&rft.volume=10&rft.spage=197&rft.epage=205&rft.pages=197-205&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2012.02.020&rft_dat=%3Cproquest_cross%3E1009128664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1009128664&rft_id=info:pmid/22520431&rft_els_id=S1751616112000719&rfr_iscdi=true |