SuperMatching: Feature Matching Using Supersymmetric Geometric Constraints
Feature matching is a challenging problem at the heart of numerous computer graphics and computer vision applications. We present the SuperMatching algorithm for finding correspondences between two sets of features. It does so by considering triples or higher order tuples of points, going beyond the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2013-11, Vol.19 (11), p.1885-1894 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1894 |
---|---|
container_issue | 11 |
container_start_page | 1885 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 19 |
creator | Zhi-Quan Cheng Yin Chen Martin, R. R. Yu-Kun Lai Aiping Wang |
description | Feature matching is a challenging problem at the heart of numerous computer graphics and computer vision applications. We present the SuperMatching algorithm for finding correspondences between two sets of features. It does so by considering triples or higher order tuples of points, going beyond the pointwise and pairwise approaches typically used. SuperMatching is formulated using a supersymmetric tensor representing an affinity metric that takes into account feature similarity and geometric constraints between features: Feature matching is cast as a higher order graph matching problem. SuperMatching takes advantage of supersymmetry to devise an efficient sampling strategy to estimate the affinity tensor, as well as to store the estimated tensor compactly. Matching is performed by an efficient higher order power iteration approach that takes advantage of this compact representation. Experiments on both synthetic and real data show that SuperMatching provides more accurate feature matching than other state-of-the-art approaches for a wide range of 2D and 3D features, with competitive computational cost. |
doi_str_mv | 10.1109/TVCG.2013.15 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692411363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6461881</ieee_id><sourcerecordid>3073295261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-5311bb0be3d634e45bf005d5b539648054a4599674e5a73b8930ef7f115555ca3</originalsourceid><addsrcrecordid>eNqN0TtPwzAQB3ALgWh5bGxIqBILAyk-P2M2FNECKmKgZY2c9AKpmqTYydBvT_ocWMCDfbJ_Oun8J-QCaB-AmrvxRzTsMwq8D_KAdMEICKik6rCtqdYBU0x1yIn3M0pBiNAckw4TlBlDwy55eW8W6F5tnX7l5ed9b4C2bhz2dje9iV_ta-WXRYG1y9PeEKttFVWlr53Ny9qfkaPMzj2eb89TMhk8jqOnYPQ2fI4eRkEqBK8DyQGShCbIp4oLFDLJKJVTmUhulAipFFZIY5QWKK3mSWg4xUxnALJdqeWn5GbTd-Gq7wZ9HRe5T3E-tyVWjY9BGSYAuOJ_0_Y_tGBMwz8oZwpMyMOWXv-is6pxZTvzWhltNLBW3W5U6irvHWbxwuWFdcsYaLxKLl4lF6-Si0G2_GrbtEkKnO7xLqoWXG5Ajoj7ZyUUhCHwH8BHmY0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1432979712</pqid></control><display><type>article</type><title>SuperMatching: Feature Matching Using Supersymmetric Geometric Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Zhi-Quan Cheng ; Yin Chen ; Martin, R. R. ; Yu-Kun Lai ; Aiping Wang</creator><creatorcontrib>Zhi-Quan Cheng ; Yin Chen ; Martin, R. R. ; Yu-Kun Lai ; Aiping Wang</creatorcontrib><description>Feature matching is a challenging problem at the heart of numerous computer graphics and computer vision applications. We present the SuperMatching algorithm for finding correspondences between two sets of features. It does so by considering triples or higher order tuples of points, going beyond the pointwise and pairwise approaches typically used. SuperMatching is formulated using a supersymmetric tensor representing an affinity metric that takes into account feature similarity and geometric constraints between features: Feature matching is cast as a higher order graph matching problem. SuperMatching takes advantage of supersymmetry to devise an efficient sampling strategy to estimate the affinity tensor, as well as to store the estimated tensor compactly. Matching is performed by an efficient higher order power iteration approach that takes advantage of this compact representation. Experiments on both synthetic and real data show that SuperMatching provides more accurate feature matching than other state-of-the-art approaches for a wide range of 2D and 3D features, with competitive computational cost.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2013.15</identifier><identifier>PMID: 24029908</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Affinity ; Algorithms ; Computational efficiency ; Computer graphics ; Educational institutions ; Feature matching ; Geometric constraints ; Matching ; Mathematical analysis ; Shape ; Studies ; supersymmetric tensor ; Supersymmetry ; Tensile stress ; Tensors ; Three dimensional ; Transmission line matrix methods ; Vectors</subject><ispartof>IEEE transactions on visualization and computer graphics, 2013-11, Vol.19 (11), p.1885-1894</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-5311bb0be3d634e45bf005d5b539648054a4599674e5a73b8930ef7f115555ca3</citedby><cites>FETCH-LOGICAL-c443t-5311bb0be3d634e45bf005d5b539648054a4599674e5a73b8930ef7f115555ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6461881$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6461881$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24029908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhi-Quan Cheng</creatorcontrib><creatorcontrib>Yin Chen</creatorcontrib><creatorcontrib>Martin, R. R.</creatorcontrib><creatorcontrib>Yu-Kun Lai</creatorcontrib><creatorcontrib>Aiping Wang</creatorcontrib><title>SuperMatching: Feature Matching Using Supersymmetric Geometric Constraints</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Feature matching is a challenging problem at the heart of numerous computer graphics and computer vision applications. We present the SuperMatching algorithm for finding correspondences between two sets of features. It does so by considering triples or higher order tuples of points, going beyond the pointwise and pairwise approaches typically used. SuperMatching is formulated using a supersymmetric tensor representing an affinity metric that takes into account feature similarity and geometric constraints between features: Feature matching is cast as a higher order graph matching problem. SuperMatching takes advantage of supersymmetry to devise an efficient sampling strategy to estimate the affinity tensor, as well as to store the estimated tensor compactly. Matching is performed by an efficient higher order power iteration approach that takes advantage of this compact representation. Experiments on both synthetic and real data show that SuperMatching provides more accurate feature matching than other state-of-the-art approaches for a wide range of 2D and 3D features, with competitive computational cost.</description><subject>Accuracy</subject><subject>Affinity</subject><subject>Algorithms</subject><subject>Computational efficiency</subject><subject>Computer graphics</subject><subject>Educational institutions</subject><subject>Feature matching</subject><subject>Geometric constraints</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Shape</subject><subject>Studies</subject><subject>supersymmetric tensor</subject><subject>Supersymmetry</subject><subject>Tensile stress</subject><subject>Tensors</subject><subject>Three dimensional</subject><subject>Transmission line matrix methods</subject><subject>Vectors</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0TtPwzAQB3ALgWh5bGxIqBILAyk-P2M2FNECKmKgZY2c9AKpmqTYydBvT_ocWMCDfbJ_Oun8J-QCaB-AmrvxRzTsMwq8D_KAdMEICKik6rCtqdYBU0x1yIn3M0pBiNAckw4TlBlDwy55eW8W6F5tnX7l5ed9b4C2bhz2dje9iV_ta-WXRYG1y9PeEKttFVWlr53Ny9qfkaPMzj2eb89TMhk8jqOnYPQ2fI4eRkEqBK8DyQGShCbIp4oLFDLJKJVTmUhulAipFFZIY5QWKK3mSWg4xUxnALJdqeWn5GbTd-Gq7wZ9HRe5T3E-tyVWjY9BGSYAuOJ_0_Y_tGBMwz8oZwpMyMOWXv-is6pxZTvzWhltNLBW3W5U6irvHWbxwuWFdcsYaLxKLl4lF6-Si0G2_GrbtEkKnO7xLqoWXG5Ajoj7ZyUUhCHwH8BHmY0</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Zhi-Quan Cheng</creator><creator>Yin Chen</creator><creator>Martin, R. R.</creator><creator>Yu-Kun Lai</creator><creator>Aiping Wang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20131101</creationdate><title>SuperMatching: Feature Matching Using Supersymmetric Geometric Constraints</title><author>Zhi-Quan Cheng ; Yin Chen ; Martin, R. R. ; Yu-Kun Lai ; Aiping Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-5311bb0be3d634e45bf005d5b539648054a4599674e5a73b8930ef7f115555ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Affinity</topic><topic>Algorithms</topic><topic>Computational efficiency</topic><topic>Computer graphics</topic><topic>Educational institutions</topic><topic>Feature matching</topic><topic>Geometric constraints</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Shape</topic><topic>Studies</topic><topic>supersymmetric tensor</topic><topic>Supersymmetry</topic><topic>Tensile stress</topic><topic>Tensors</topic><topic>Three dimensional</topic><topic>Transmission line matrix methods</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhi-Quan Cheng</creatorcontrib><creatorcontrib>Yin Chen</creatorcontrib><creatorcontrib>Martin, R. R.</creatorcontrib><creatorcontrib>Yu-Kun Lai</creatorcontrib><creatorcontrib>Aiping Wang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhi-Quan Cheng</au><au>Yin Chen</au><au>Martin, R. R.</au><au>Yu-Kun Lai</au><au>Aiping Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SuperMatching: Feature Matching Using Supersymmetric Geometric Constraints</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>19</volume><issue>11</issue><spage>1885</spage><epage>1894</epage><pages>1885-1894</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Feature matching is a challenging problem at the heart of numerous computer graphics and computer vision applications. We present the SuperMatching algorithm for finding correspondences between two sets of features. It does so by considering triples or higher order tuples of points, going beyond the pointwise and pairwise approaches typically used. SuperMatching is formulated using a supersymmetric tensor representing an affinity metric that takes into account feature similarity and geometric constraints between features: Feature matching is cast as a higher order graph matching problem. SuperMatching takes advantage of supersymmetry to devise an efficient sampling strategy to estimate the affinity tensor, as well as to store the estimated tensor compactly. Matching is performed by an efficient higher order power iteration approach that takes advantage of this compact representation. Experiments on both synthetic and real data show that SuperMatching provides more accurate feature matching than other state-of-the-art approaches for a wide range of 2D and 3D features, with competitive computational cost.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24029908</pmid><doi>10.1109/TVCG.2013.15</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2013-11, Vol.19 (11), p.1885-1894 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692411363 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Affinity Algorithms Computational efficiency Computer graphics Educational institutions Feature matching Geometric constraints Matching Mathematical analysis Shape Studies supersymmetric tensor Supersymmetry Tensile stress Tensors Three dimensional Transmission line matrix methods Vectors |
title | SuperMatching: Feature Matching Using Supersymmetric Geometric Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SuperMatching:%20Feature%20Matching%20Using%20Supersymmetric%20Geometric%20Constraints&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Zhi-Quan%20Cheng&rft.date=2013-11-01&rft.volume=19&rft.issue=11&rft.spage=1885&rft.epage=1894&rft.pages=1885-1894&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2013.15&rft_dat=%3Cproquest_RIE%3E3073295261%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1432979712&rft_id=info:pmid/24029908&rft_ieee_id=6461881&rfr_iscdi=true |