SuperMatching: Feature Matching Using Supersymmetric Geometric Constraints

Feature matching is a challenging problem at the heart of numerous computer graphics and computer vision applications. We present the SuperMatching algorithm for finding correspondences between two sets of features. It does so by considering triples or higher order tuples of points, going beyond the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2013-11, Vol.19 (11), p.1885-1894
Hauptverfasser: Zhi-Quan Cheng, Yin Chen, Martin, R. R., Yu-Kun Lai, Aiping Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1894
container_issue 11
container_start_page 1885
container_title IEEE transactions on visualization and computer graphics
container_volume 19
creator Zhi-Quan Cheng
Yin Chen
Martin, R. R.
Yu-Kun Lai
Aiping Wang
description Feature matching is a challenging problem at the heart of numerous computer graphics and computer vision applications. We present the SuperMatching algorithm for finding correspondences between two sets of features. It does so by considering triples or higher order tuples of points, going beyond the pointwise and pairwise approaches typically used. SuperMatching is formulated using a supersymmetric tensor representing an affinity metric that takes into account feature similarity and geometric constraints between features: Feature matching is cast as a higher order graph matching problem. SuperMatching takes advantage of supersymmetry to devise an efficient sampling strategy to estimate the affinity tensor, as well as to store the estimated tensor compactly. Matching is performed by an efficient higher order power iteration approach that takes advantage of this compact representation. Experiments on both synthetic and real data show that SuperMatching provides more accurate feature matching than other state-of-the-art approaches for a wide range of 2D and 3D features, with competitive computational cost.
doi_str_mv 10.1109/TVCG.2013.15
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692411363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6461881</ieee_id><sourcerecordid>3073295261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-5311bb0be3d634e45bf005d5b539648054a4599674e5a73b8930ef7f115555ca3</originalsourceid><addsrcrecordid>eNqN0TtPwzAQB3ALgWh5bGxIqBILAyk-P2M2FNECKmKgZY2c9AKpmqTYydBvT_ocWMCDfbJ_Oun8J-QCaB-AmrvxRzTsMwq8D_KAdMEICKik6rCtqdYBU0x1yIn3M0pBiNAckw4TlBlDwy55eW8W6F5tnX7l5ed9b4C2bhz2dje9iV_ta-WXRYG1y9PeEKttFVWlr53Ny9qfkaPMzj2eb89TMhk8jqOnYPQ2fI4eRkEqBK8DyQGShCbIp4oLFDLJKJVTmUhulAipFFZIY5QWKK3mSWg4xUxnALJdqeWn5GbTd-Gq7wZ9HRe5T3E-tyVWjY9BGSYAuOJ_0_Y_tGBMwz8oZwpMyMOWXv-is6pxZTvzWhltNLBW3W5U6irvHWbxwuWFdcsYaLxKLl4lF6-Si0G2_GrbtEkKnO7xLqoWXG5Ajoj7ZyUUhCHwH8BHmY0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1432979712</pqid></control><display><type>article</type><title>SuperMatching: Feature Matching Using Supersymmetric Geometric Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Zhi-Quan Cheng ; Yin Chen ; Martin, R. R. ; Yu-Kun Lai ; Aiping Wang</creator><creatorcontrib>Zhi-Quan Cheng ; Yin Chen ; Martin, R. R. ; Yu-Kun Lai ; Aiping Wang</creatorcontrib><description>Feature matching is a challenging problem at the heart of numerous computer graphics and computer vision applications. We present the SuperMatching algorithm for finding correspondences between two sets of features. It does so by considering triples or higher order tuples of points, going beyond the pointwise and pairwise approaches typically used. SuperMatching is formulated using a supersymmetric tensor representing an affinity metric that takes into account feature similarity and geometric constraints between features: Feature matching is cast as a higher order graph matching problem. SuperMatching takes advantage of supersymmetry to devise an efficient sampling strategy to estimate the affinity tensor, as well as to store the estimated tensor compactly. Matching is performed by an efficient higher order power iteration approach that takes advantage of this compact representation. Experiments on both synthetic and real data show that SuperMatching provides more accurate feature matching than other state-of-the-art approaches for a wide range of 2D and 3D features, with competitive computational cost.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2013.15</identifier><identifier>PMID: 24029908</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Affinity ; Algorithms ; Computational efficiency ; Computer graphics ; Educational institutions ; Feature matching ; Geometric constraints ; Matching ; Mathematical analysis ; Shape ; Studies ; supersymmetric tensor ; Supersymmetry ; Tensile stress ; Tensors ; Three dimensional ; Transmission line matrix methods ; Vectors</subject><ispartof>IEEE transactions on visualization and computer graphics, 2013-11, Vol.19 (11), p.1885-1894</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-5311bb0be3d634e45bf005d5b539648054a4599674e5a73b8930ef7f115555ca3</citedby><cites>FETCH-LOGICAL-c443t-5311bb0be3d634e45bf005d5b539648054a4599674e5a73b8930ef7f115555ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6461881$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6461881$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24029908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhi-Quan Cheng</creatorcontrib><creatorcontrib>Yin Chen</creatorcontrib><creatorcontrib>Martin, R. R.</creatorcontrib><creatorcontrib>Yu-Kun Lai</creatorcontrib><creatorcontrib>Aiping Wang</creatorcontrib><title>SuperMatching: Feature Matching Using Supersymmetric Geometric Constraints</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Feature matching is a challenging problem at the heart of numerous computer graphics and computer vision applications. We present the SuperMatching algorithm for finding correspondences between two sets of features. It does so by considering triples or higher order tuples of points, going beyond the pointwise and pairwise approaches typically used. SuperMatching is formulated using a supersymmetric tensor representing an affinity metric that takes into account feature similarity and geometric constraints between features: Feature matching is cast as a higher order graph matching problem. SuperMatching takes advantage of supersymmetry to devise an efficient sampling strategy to estimate the affinity tensor, as well as to store the estimated tensor compactly. Matching is performed by an efficient higher order power iteration approach that takes advantage of this compact representation. Experiments on both synthetic and real data show that SuperMatching provides more accurate feature matching than other state-of-the-art approaches for a wide range of 2D and 3D features, with competitive computational cost.</description><subject>Accuracy</subject><subject>Affinity</subject><subject>Algorithms</subject><subject>Computational efficiency</subject><subject>Computer graphics</subject><subject>Educational institutions</subject><subject>Feature matching</subject><subject>Geometric constraints</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Shape</subject><subject>Studies</subject><subject>supersymmetric tensor</subject><subject>Supersymmetry</subject><subject>Tensile stress</subject><subject>Tensors</subject><subject>Three dimensional</subject><subject>Transmission line matrix methods</subject><subject>Vectors</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0TtPwzAQB3ALgWh5bGxIqBILAyk-P2M2FNECKmKgZY2c9AKpmqTYydBvT_ocWMCDfbJ_Oun8J-QCaB-AmrvxRzTsMwq8D_KAdMEICKik6rCtqdYBU0x1yIn3M0pBiNAckw4TlBlDwy55eW8W6F5tnX7l5ed9b4C2bhz2dje9iV_ta-WXRYG1y9PeEKttFVWlr53Ny9qfkaPMzj2eb89TMhk8jqOnYPQ2fI4eRkEqBK8DyQGShCbIp4oLFDLJKJVTmUhulAipFFZIY5QWKK3mSWg4xUxnALJdqeWn5GbTd-Gq7wZ9HRe5T3E-tyVWjY9BGSYAuOJ_0_Y_tGBMwz8oZwpMyMOWXv-is6pxZTvzWhltNLBW3W5U6irvHWbxwuWFdcsYaLxKLl4lF6-Si0G2_GrbtEkKnO7xLqoWXG5Ajoj7ZyUUhCHwH8BHmY0</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Zhi-Quan Cheng</creator><creator>Yin Chen</creator><creator>Martin, R. R.</creator><creator>Yu-Kun Lai</creator><creator>Aiping Wang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20131101</creationdate><title>SuperMatching: Feature Matching Using Supersymmetric Geometric Constraints</title><author>Zhi-Quan Cheng ; Yin Chen ; Martin, R. R. ; Yu-Kun Lai ; Aiping Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-5311bb0be3d634e45bf005d5b539648054a4599674e5a73b8930ef7f115555ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Affinity</topic><topic>Algorithms</topic><topic>Computational efficiency</topic><topic>Computer graphics</topic><topic>Educational institutions</topic><topic>Feature matching</topic><topic>Geometric constraints</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Shape</topic><topic>Studies</topic><topic>supersymmetric tensor</topic><topic>Supersymmetry</topic><topic>Tensile stress</topic><topic>Tensors</topic><topic>Three dimensional</topic><topic>Transmission line matrix methods</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhi-Quan Cheng</creatorcontrib><creatorcontrib>Yin Chen</creatorcontrib><creatorcontrib>Martin, R. R.</creatorcontrib><creatorcontrib>Yu-Kun Lai</creatorcontrib><creatorcontrib>Aiping Wang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhi-Quan Cheng</au><au>Yin Chen</au><au>Martin, R. R.</au><au>Yu-Kun Lai</au><au>Aiping Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SuperMatching: Feature Matching Using Supersymmetric Geometric Constraints</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>19</volume><issue>11</issue><spage>1885</spage><epage>1894</epage><pages>1885-1894</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Feature matching is a challenging problem at the heart of numerous computer graphics and computer vision applications. We present the SuperMatching algorithm for finding correspondences between two sets of features. It does so by considering triples or higher order tuples of points, going beyond the pointwise and pairwise approaches typically used. SuperMatching is formulated using a supersymmetric tensor representing an affinity metric that takes into account feature similarity and geometric constraints between features: Feature matching is cast as a higher order graph matching problem. SuperMatching takes advantage of supersymmetry to devise an efficient sampling strategy to estimate the affinity tensor, as well as to store the estimated tensor compactly. Matching is performed by an efficient higher order power iteration approach that takes advantage of this compact representation. Experiments on both synthetic and real data show that SuperMatching provides more accurate feature matching than other state-of-the-art approaches for a wide range of 2D and 3D features, with competitive computational cost.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24029908</pmid><doi>10.1109/TVCG.2013.15</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2013-11, Vol.19 (11), p.1885-1894
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_miscellaneous_1692411363
source IEEE Electronic Library (IEL)
subjects Accuracy
Affinity
Algorithms
Computational efficiency
Computer graphics
Educational institutions
Feature matching
Geometric constraints
Matching
Mathematical analysis
Shape
Studies
supersymmetric tensor
Supersymmetry
Tensile stress
Tensors
Three dimensional
Transmission line matrix methods
Vectors
title SuperMatching: Feature Matching Using Supersymmetric Geometric Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SuperMatching:%20Feature%20Matching%20Using%20Supersymmetric%20Geometric%20Constraints&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Zhi-Quan%20Cheng&rft.date=2013-11-01&rft.volume=19&rft.issue=11&rft.spage=1885&rft.epage=1894&rft.pages=1885-1894&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2013.15&rft_dat=%3Cproquest_RIE%3E3073295261%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1432979712&rft_id=info:pmid/24029908&rft_ieee_id=6461881&rfr_iscdi=true