Electricity Generation from Wastewater Using an Anaerobic Fluidized Bed Microbial Fuel Cell

The anaerobic fluidized bed microbial fuel cell (AFBMFC) was developed to generate electricity while simultaneously treating wastewater. During a complete cycle, the AFBMFC continuously generated electricity with a maximum power density of 1100 mW/m2 and removal of total chemical oxygen demand (COD)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2011-11, Vol.50 (21), p.12225-12232
Hauptverfasser: Kong, Weifang, Guo, Qingjie, Wang, Xuyun, Yue, Xuehai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12232
container_issue 21
container_start_page 12225
container_title Industrial & engineering chemistry research
container_volume 50
creator Kong, Weifang
Guo, Qingjie
Wang, Xuyun
Yue, Xuehai
description The anaerobic fluidized bed microbial fuel cell (AFBMFC) was developed to generate electricity while simultaneously treating wastewater. During a complete cycle, the AFBMFC continuously generated electricity with a maximum power density of 1100 mW/m2 and removal of total chemical oxygen demand (COD) of 89%. To achieve this power density, the artificial electron-mediator neutral red (NR) was employed in the anode chamber. Granular biological electrodes, fluidization behavior, electron mediators, and temperature were evaluated to improve power production and wastewater treatment efficiency. The results showed that the maximum power density production of granule-graphite AFBMFC was 530 mW/m2, much higher than 410 mW/m2 using a granular activated carbon AFBMFC in the same reactor. Fluidization behaviors enhance the mass transfer and momentum transfer between activated carbon and wastewater. The power density increased with increasing methylene blue (MB) and NR concentration. Furthermore, power density reveals a slight increase as MB and NR concentrations exceed 0.5 and 1.7 mmol/L. The optimum temperature ranges from 23 to 40 °C. The Coulombic efficiency was 9.3% under the best operating conditions.
doi_str_mv 10.1021/ie2007505
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692409559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692409559</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-ee6816a628643df3c3899d4dd535cf843bb272af82a29998840487273497e0e53</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhhdRsFYPvsFeBD1EN5udze6xlrYKiheLBw9hupnISprU3QSpT2_EohfBwzAwfPMx8zN2morLVMj0ypMUIgcBe2yUghQJCAX7bCSMMQkYA4fsKMZXIQSAUiP2PKvJdcE73235ghoK2Pm24VVo1_wJY0fv2FHgy-ibF44NnzRIoV15x-d170v_QSW_Hureu68x1nzeU82nVNfH7KDCOtLJro_Zcj57nN4kdw-L2-nkLsEMoEuItEk1amm0ysoqc5mxtlRlCRm4yqhstZK5xMpIlNZaY5RQJpd5pmxOgiAbs_Nv7ya0bz3Frlj76IYDsKG2j0WqrVTCAtj_UdBS61wM9jG7-EaHv2IMVBWb4NcYtkUqiq-si5-sB_Zsp8XosK4CNs7HnwWptM1Bpb8culi8tn1ohlz-8H0C7wqHtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562667027</pqid></control><display><type>article</type><title>Electricity Generation from Wastewater Using an Anaerobic Fluidized Bed Microbial Fuel Cell</title><source>American Chemical Society Journals</source><creator>Kong, Weifang ; Guo, Qingjie ; Wang, Xuyun ; Yue, Xuehai</creator><creatorcontrib>Kong, Weifang ; Guo, Qingjie ; Wang, Xuyun ; Yue, Xuehai</creatorcontrib><description>The anaerobic fluidized bed microbial fuel cell (AFBMFC) was developed to generate electricity while simultaneously treating wastewater. During a complete cycle, the AFBMFC continuously generated electricity with a maximum power density of 1100 mW/m2 and removal of total chemical oxygen demand (COD) of 89%. To achieve this power density, the artificial electron-mediator neutral red (NR) was employed in the anode chamber. Granular biological electrodes, fluidization behavior, electron mediators, and temperature were evaluated to improve power production and wastewater treatment efficiency. The results showed that the maximum power density production of granule-graphite AFBMFC was 530 mW/m2, much higher than 410 mW/m2 using a granular activated carbon AFBMFC in the same reactor. Fluidization behaviors enhance the mass transfer and momentum transfer between activated carbon and wastewater. The power density increased with increasing methylene blue (MB) and NR concentration. Furthermore, power density reveals a slight increase as MB and NR concentrations exceed 0.5 and 1.7 mmol/L. The optimum temperature ranges from 23 to 40 °C. The Coulombic efficiency was 9.3% under the best operating conditions.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie2007505</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Activated carbon ; Applied sciences ; Biochemical fuel cells ; Chemical engineering ; Density ; Electric power generation ; Electricity ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fluidization ; Fluidized beds ; Fuel cells ; General purification processes ; General Research ; Microorganisms ; Pollution ; Wastewater treatment ; Wastewaters ; Water treatment and pollution</subject><ispartof>Industrial &amp; engineering chemistry research, 2011-11, Vol.50 (21), p.12225-12232</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-ee6816a628643df3c3899d4dd535cf843bb272af82a29998840487273497e0e53</citedby><cites>FETCH-LOGICAL-a355t-ee6816a628643df3c3899d4dd535cf843bb272af82a29998840487273497e0e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie2007505$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie2007505$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24697541$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kong, Weifang</creatorcontrib><creatorcontrib>Guo, Qingjie</creatorcontrib><creatorcontrib>Wang, Xuyun</creatorcontrib><creatorcontrib>Yue, Xuehai</creatorcontrib><title>Electricity Generation from Wastewater Using an Anaerobic Fluidized Bed Microbial Fuel Cell</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The anaerobic fluidized bed microbial fuel cell (AFBMFC) was developed to generate electricity while simultaneously treating wastewater. During a complete cycle, the AFBMFC continuously generated electricity with a maximum power density of 1100 mW/m2 and removal of total chemical oxygen demand (COD) of 89%. To achieve this power density, the artificial electron-mediator neutral red (NR) was employed in the anode chamber. Granular biological electrodes, fluidization behavior, electron mediators, and temperature were evaluated to improve power production and wastewater treatment efficiency. The results showed that the maximum power density production of granule-graphite AFBMFC was 530 mW/m2, much higher than 410 mW/m2 using a granular activated carbon AFBMFC in the same reactor. Fluidization behaviors enhance the mass transfer and momentum transfer between activated carbon and wastewater. The power density increased with increasing methylene blue (MB) and NR concentration. Furthermore, power density reveals a slight increase as MB and NR concentrations exceed 0.5 and 1.7 mmol/L. The optimum temperature ranges from 23 to 40 °C. The Coulombic efficiency was 9.3% under the best operating conditions.</description><subject>Activated carbon</subject><subject>Applied sciences</subject><subject>Biochemical fuel cells</subject><subject>Chemical engineering</subject><subject>Density</subject><subject>Electric power generation</subject><subject>Electricity</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fluidization</subject><subject>Fluidized beds</subject><subject>Fuel cells</subject><subject>General purification processes</subject><subject>General Research</subject><subject>Microorganisms</subject><subject>Pollution</subject><subject>Wastewater treatment</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKw0AQhhdRsFYPvsFeBD1EN5udze6xlrYKiheLBw9hupnISprU3QSpT2_EohfBwzAwfPMx8zN2morLVMj0ypMUIgcBe2yUghQJCAX7bCSMMQkYA4fsKMZXIQSAUiP2PKvJdcE73235ghoK2Pm24VVo1_wJY0fv2FHgy-ibF44NnzRIoV15x-d170v_QSW_Hureu68x1nzeU82nVNfH7KDCOtLJro_Zcj57nN4kdw-L2-nkLsEMoEuItEk1amm0ysoqc5mxtlRlCRm4yqhstZK5xMpIlNZaY5RQJpd5pmxOgiAbs_Nv7ya0bz3Frlj76IYDsKG2j0WqrVTCAtj_UdBS61wM9jG7-EaHv2IMVBWb4NcYtkUqiq-si5-sB_Zsp8XosK4CNs7HnwWptM1Bpb8culi8tn1ohlz-8H0C7wqHtg</recordid><startdate>20111102</startdate><enddate>20111102</enddate><creator>Kong, Weifang</creator><creator>Guo, Qingjie</creator><creator>Wang, Xuyun</creator><creator>Yue, Xuehai</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7T7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20111102</creationdate><title>Electricity Generation from Wastewater Using an Anaerobic Fluidized Bed Microbial Fuel Cell</title><author>Kong, Weifang ; Guo, Qingjie ; Wang, Xuyun ; Yue, Xuehai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-ee6816a628643df3c3899d4dd535cf843bb272af82a29998840487273497e0e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activated carbon</topic><topic>Applied sciences</topic><topic>Biochemical fuel cells</topic><topic>Chemical engineering</topic><topic>Density</topic><topic>Electric power generation</topic><topic>Electricity</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fluidization</topic><topic>Fluidized beds</topic><topic>Fuel cells</topic><topic>General purification processes</topic><topic>General Research</topic><topic>Microorganisms</topic><topic>Pollution</topic><topic>Wastewater treatment</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Weifang</creatorcontrib><creatorcontrib>Guo, Qingjie</creatorcontrib><creatorcontrib>Wang, Xuyun</creatorcontrib><creatorcontrib>Yue, Xuehai</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Weifang</au><au>Guo, Qingjie</au><au>Wang, Xuyun</au><au>Yue, Xuehai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electricity Generation from Wastewater Using an Anaerobic Fluidized Bed Microbial Fuel Cell</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2011-11-02</date><risdate>2011</risdate><volume>50</volume><issue>21</issue><spage>12225</spage><epage>12232</epage><pages>12225-12232</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>The anaerobic fluidized bed microbial fuel cell (AFBMFC) was developed to generate electricity while simultaneously treating wastewater. During a complete cycle, the AFBMFC continuously generated electricity with a maximum power density of 1100 mW/m2 and removal of total chemical oxygen demand (COD) of 89%. To achieve this power density, the artificial electron-mediator neutral red (NR) was employed in the anode chamber. Granular biological electrodes, fluidization behavior, electron mediators, and temperature were evaluated to improve power production and wastewater treatment efficiency. The results showed that the maximum power density production of granule-graphite AFBMFC was 530 mW/m2, much higher than 410 mW/m2 using a granular activated carbon AFBMFC in the same reactor. Fluidization behaviors enhance the mass transfer and momentum transfer between activated carbon and wastewater. The power density increased with increasing methylene blue (MB) and NR concentration. Furthermore, power density reveals a slight increase as MB and NR concentrations exceed 0.5 and 1.7 mmol/L. The optimum temperature ranges from 23 to 40 °C. The Coulombic efficiency was 9.3% under the best operating conditions.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie2007505</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2011-11, Vol.50 (21), p.12225-12232
issn 0888-5885
1520-5045
language eng
recordid cdi_proquest_miscellaneous_1692409559
source American Chemical Society Journals
subjects Activated carbon
Applied sciences
Biochemical fuel cells
Chemical engineering
Density
Electric power generation
Electricity
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fluidization
Fluidized beds
Fuel cells
General purification processes
General Research
Microorganisms
Pollution
Wastewater treatment
Wastewaters
Water treatment and pollution
title Electricity Generation from Wastewater Using an Anaerobic Fluidized Bed Microbial Fuel Cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A27%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electricity%20Generation%20from%20Wastewater%20Using%20an%20Anaerobic%20Fluidized%20Bed%20Microbial%20Fuel%20Cell&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Kong,%20Weifang&rft.date=2011-11-02&rft.volume=50&rft.issue=21&rft.spage=12225&rft.epage=12232&rft.pages=12225-12232&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie2007505&rft_dat=%3Cproquest_cross%3E1692409559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562667027&rft_id=info:pmid/&rfr_iscdi=true