Electricity Generation from Wastewater Using an Anaerobic Fluidized Bed Microbial Fuel Cell
The anaerobic fluidized bed microbial fuel cell (AFBMFC) was developed to generate electricity while simultaneously treating wastewater. During a complete cycle, the AFBMFC continuously generated electricity with a maximum power density of 1100 mW/m2 and removal of total chemical oxygen demand (COD)...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2011-11, Vol.50 (21), p.12225-12232 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12232 |
---|---|
container_issue | 21 |
container_start_page | 12225 |
container_title | Industrial & engineering chemistry research |
container_volume | 50 |
creator | Kong, Weifang Guo, Qingjie Wang, Xuyun Yue, Xuehai |
description | The anaerobic fluidized bed microbial fuel cell (AFBMFC) was developed to generate electricity while simultaneously treating wastewater. During a complete cycle, the AFBMFC continuously generated electricity with a maximum power density of 1100 mW/m2 and removal of total chemical oxygen demand (COD) of 89%. To achieve this power density, the artificial electron-mediator neutral red (NR) was employed in the anode chamber. Granular biological electrodes, fluidization behavior, electron mediators, and temperature were evaluated to improve power production and wastewater treatment efficiency. The results showed that the maximum power density production of granule-graphite AFBMFC was 530 mW/m2, much higher than 410 mW/m2 using a granular activated carbon AFBMFC in the same reactor. Fluidization behaviors enhance the mass transfer and momentum transfer between activated carbon and wastewater. The power density increased with increasing methylene blue (MB) and NR concentration. Furthermore, power density reveals a slight increase as MB and NR concentrations exceed 0.5 and 1.7 mmol/L. The optimum temperature ranges from 23 to 40 °C. The Coulombic efficiency was 9.3% under the best operating conditions. |
doi_str_mv | 10.1021/ie2007505 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692409559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692409559</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-ee6816a628643df3c3899d4dd535cf843bb272af82a29998840487273497e0e53</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhhdRsFYPvsFeBD1EN5udze6xlrYKiheLBw9hupnISprU3QSpT2_EohfBwzAwfPMx8zN2morLVMj0ypMUIgcBe2yUghQJCAX7bCSMMQkYA4fsKMZXIQSAUiP2PKvJdcE73235ghoK2Pm24VVo1_wJY0fv2FHgy-ibF44NnzRIoV15x-d170v_QSW_Hureu68x1nzeU82nVNfH7KDCOtLJro_Zcj57nN4kdw-L2-nkLsEMoEuItEk1amm0ysoqc5mxtlRlCRm4yqhstZK5xMpIlNZaY5RQJpd5pmxOgiAbs_Nv7ya0bz3Frlj76IYDsKG2j0WqrVTCAtj_UdBS61wM9jG7-EaHv2IMVBWb4NcYtkUqiq-si5-sB_Zsp8XosK4CNs7HnwWptM1Bpb8culi8tn1ohlz-8H0C7wqHtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562667027</pqid></control><display><type>article</type><title>Electricity Generation from Wastewater Using an Anaerobic Fluidized Bed Microbial Fuel Cell</title><source>American Chemical Society Journals</source><creator>Kong, Weifang ; Guo, Qingjie ; Wang, Xuyun ; Yue, Xuehai</creator><creatorcontrib>Kong, Weifang ; Guo, Qingjie ; Wang, Xuyun ; Yue, Xuehai</creatorcontrib><description>The anaerobic fluidized bed microbial fuel cell (AFBMFC) was developed to generate electricity while simultaneously treating wastewater. During a complete cycle, the AFBMFC continuously generated electricity with a maximum power density of 1100 mW/m2 and removal of total chemical oxygen demand (COD) of 89%. To achieve this power density, the artificial electron-mediator neutral red (NR) was employed in the anode chamber. Granular biological electrodes, fluidization behavior, electron mediators, and temperature were evaluated to improve power production and wastewater treatment efficiency. The results showed that the maximum power density production of granule-graphite AFBMFC was 530 mW/m2, much higher than 410 mW/m2 using a granular activated carbon AFBMFC in the same reactor. Fluidization behaviors enhance the mass transfer and momentum transfer between activated carbon and wastewater. The power density increased with increasing methylene blue (MB) and NR concentration. Furthermore, power density reveals a slight increase as MB and NR concentrations exceed 0.5 and 1.7 mmol/L. The optimum temperature ranges from 23 to 40 °C. The Coulombic efficiency was 9.3% under the best operating conditions.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie2007505</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Activated carbon ; Applied sciences ; Biochemical fuel cells ; Chemical engineering ; Density ; Electric power generation ; Electricity ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fluidization ; Fluidized beds ; Fuel cells ; General purification processes ; General Research ; Microorganisms ; Pollution ; Wastewater treatment ; Wastewaters ; Water treatment and pollution</subject><ispartof>Industrial & engineering chemistry research, 2011-11, Vol.50 (21), p.12225-12232</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-ee6816a628643df3c3899d4dd535cf843bb272af82a29998840487273497e0e53</citedby><cites>FETCH-LOGICAL-a355t-ee6816a628643df3c3899d4dd535cf843bb272af82a29998840487273497e0e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie2007505$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie2007505$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24697541$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kong, Weifang</creatorcontrib><creatorcontrib>Guo, Qingjie</creatorcontrib><creatorcontrib>Wang, Xuyun</creatorcontrib><creatorcontrib>Yue, Xuehai</creatorcontrib><title>Electricity Generation from Wastewater Using an Anaerobic Fluidized Bed Microbial Fuel Cell</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The anaerobic fluidized bed microbial fuel cell (AFBMFC) was developed to generate electricity while simultaneously treating wastewater. During a complete cycle, the AFBMFC continuously generated electricity with a maximum power density of 1100 mW/m2 and removal of total chemical oxygen demand (COD) of 89%. To achieve this power density, the artificial electron-mediator neutral red (NR) was employed in the anode chamber. Granular biological electrodes, fluidization behavior, electron mediators, and temperature were evaluated to improve power production and wastewater treatment efficiency. The results showed that the maximum power density production of granule-graphite AFBMFC was 530 mW/m2, much higher than 410 mW/m2 using a granular activated carbon AFBMFC in the same reactor. Fluidization behaviors enhance the mass transfer and momentum transfer between activated carbon and wastewater. The power density increased with increasing methylene blue (MB) and NR concentration. Furthermore, power density reveals a slight increase as MB and NR concentrations exceed 0.5 and 1.7 mmol/L. The optimum temperature ranges from 23 to 40 °C. The Coulombic efficiency was 9.3% under the best operating conditions.</description><subject>Activated carbon</subject><subject>Applied sciences</subject><subject>Biochemical fuel cells</subject><subject>Chemical engineering</subject><subject>Density</subject><subject>Electric power generation</subject><subject>Electricity</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fluidization</subject><subject>Fluidized beds</subject><subject>Fuel cells</subject><subject>General purification processes</subject><subject>General Research</subject><subject>Microorganisms</subject><subject>Pollution</subject><subject>Wastewater treatment</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKw0AQhhdRsFYPvsFeBD1EN5udze6xlrYKiheLBw9hupnISprU3QSpT2_EohfBwzAwfPMx8zN2morLVMj0ypMUIgcBe2yUghQJCAX7bCSMMQkYA4fsKMZXIQSAUiP2PKvJdcE73235ghoK2Pm24VVo1_wJY0fv2FHgy-ibF44NnzRIoV15x-d170v_QSW_Hureu68x1nzeU82nVNfH7KDCOtLJro_Zcj57nN4kdw-L2-nkLsEMoEuItEk1amm0ysoqc5mxtlRlCRm4yqhstZK5xMpIlNZaY5RQJpd5pmxOgiAbs_Nv7ya0bz3Frlj76IYDsKG2j0WqrVTCAtj_UdBS61wM9jG7-EaHv2IMVBWb4NcYtkUqiq-si5-sB_Zsp8XosK4CNs7HnwWptM1Bpb8culi8tn1ohlz-8H0C7wqHtg</recordid><startdate>20111102</startdate><enddate>20111102</enddate><creator>Kong, Weifang</creator><creator>Guo, Qingjie</creator><creator>Wang, Xuyun</creator><creator>Yue, Xuehai</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7T7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20111102</creationdate><title>Electricity Generation from Wastewater Using an Anaerobic Fluidized Bed Microbial Fuel Cell</title><author>Kong, Weifang ; Guo, Qingjie ; Wang, Xuyun ; Yue, Xuehai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-ee6816a628643df3c3899d4dd535cf843bb272af82a29998840487273497e0e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activated carbon</topic><topic>Applied sciences</topic><topic>Biochemical fuel cells</topic><topic>Chemical engineering</topic><topic>Density</topic><topic>Electric power generation</topic><topic>Electricity</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fluidization</topic><topic>Fluidized beds</topic><topic>Fuel cells</topic><topic>General purification processes</topic><topic>General Research</topic><topic>Microorganisms</topic><topic>Pollution</topic><topic>Wastewater treatment</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Weifang</creatorcontrib><creatorcontrib>Guo, Qingjie</creatorcontrib><creatorcontrib>Wang, Xuyun</creatorcontrib><creatorcontrib>Yue, Xuehai</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Weifang</au><au>Guo, Qingjie</au><au>Wang, Xuyun</au><au>Yue, Xuehai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electricity Generation from Wastewater Using an Anaerobic Fluidized Bed Microbial Fuel Cell</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2011-11-02</date><risdate>2011</risdate><volume>50</volume><issue>21</issue><spage>12225</spage><epage>12232</epage><pages>12225-12232</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>The anaerobic fluidized bed microbial fuel cell (AFBMFC) was developed to generate electricity while simultaneously treating wastewater. During a complete cycle, the AFBMFC continuously generated electricity with a maximum power density of 1100 mW/m2 and removal of total chemical oxygen demand (COD) of 89%. To achieve this power density, the artificial electron-mediator neutral red (NR) was employed in the anode chamber. Granular biological electrodes, fluidization behavior, electron mediators, and temperature were evaluated to improve power production and wastewater treatment efficiency. The results showed that the maximum power density production of granule-graphite AFBMFC was 530 mW/m2, much higher than 410 mW/m2 using a granular activated carbon AFBMFC in the same reactor. Fluidization behaviors enhance the mass transfer and momentum transfer between activated carbon and wastewater. The power density increased with increasing methylene blue (MB) and NR concentration. Furthermore, power density reveals a slight increase as MB and NR concentrations exceed 0.5 and 1.7 mmol/L. The optimum temperature ranges from 23 to 40 °C. The Coulombic efficiency was 9.3% under the best operating conditions.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie2007505</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2011-11, Vol.50 (21), p.12225-12232 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692409559 |
source | American Chemical Society Journals |
subjects | Activated carbon Applied sciences Biochemical fuel cells Chemical engineering Density Electric power generation Electricity Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fluidization Fluidized beds Fuel cells General purification processes General Research Microorganisms Pollution Wastewater treatment Wastewaters Water treatment and pollution |
title | Electricity Generation from Wastewater Using an Anaerobic Fluidized Bed Microbial Fuel Cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A27%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electricity%20Generation%20from%20Wastewater%20Using%20an%20Anaerobic%20Fluidized%20Bed%20Microbial%20Fuel%20Cell&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Kong,%20Weifang&rft.date=2011-11-02&rft.volume=50&rft.issue=21&rft.spage=12225&rft.epage=12232&rft.pages=12225-12232&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie2007505&rft_dat=%3Cproquest_cross%3E1692409559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562667027&rft_id=info:pmid/&rfr_iscdi=true |