Density-Functional Theory for Polymer–Carbon Dioxide Mixtures

We propose a new density-functional theory (DFT) describing inhomogeneous polymer–carbon dioxide (CO2) mixtures. The theory is constructed by combining the bulk Peng–Robinson equation of state (PR-EOS) with the statistical associating fluid theory (SAFT) and the fundamental measure theory (FMT). The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2012-03, Vol.51 (9), p.3832-3840
Hauptverfasser: Xu, Xiaofei, Cristancho, Diego E, Costeux, Stéphane, Wang, Zhen-Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3840
container_issue 9
container_start_page 3832
container_title Industrial & engineering chemistry research
container_volume 51
creator Xu, Xiaofei
Cristancho, Diego E
Costeux, Stéphane
Wang, Zhen-Gang
description We propose a new density-functional theory (DFT) describing inhomogeneous polymer–carbon dioxide (CO2) mixtures. The theory is constructed by combining the bulk Peng–Robinson equation of state (PR-EOS) with the statistical associating fluid theory (SAFT) and the fundamental measure theory (FMT). The weight density functions from FMT are used to extend the bulk excess Helmholtz free energy of PR-EOS to the inhomogeneous case, while the SAFT is used to describe correlations due to polymer chain connectivity and short-range forces due to weakly polar or association interactions. The additional long-range dispersion contributions are included using a mean-field approach. We apply our DFT to the interfacial properties of polystyrene–CO2 and poly­(methyl methacrylate)–CO2 systems. The calculated interfacial tension values are in good agreement with experimental data at low to intermediate pressures. The inclusion of association energy for CO2 is shown to have a significant effect. We also point out the limitation of the PR-EOS for describing polymer–CO2 mixtures at high pressures (P > 35 MPa).
doi_str_mv 10.1021/ie2029267
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692403022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692403022</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-f59e2246948f996aca354144be70205bbb68bb7548eed14185abfecfa471cf103</originalsourceid><addsrcrecordid>eNptkLFOwzAURS0EEqUw8AdZkGAIPDt24kwItRSQimAoc2S7z8JVGhc7kZqNf-AP-RKKWpWF6S7nnuEQck7hmgKjNw4ZsJLlxQEZUMEgFcDFIRmAlDIVUopjchLjAgCE4HxAbsfYRNf26aRrTOt8o-pk9o4-9In1IXn1db_E8P35NVJB-yYZO792c0ye3brtAsZTcmRVHfFst0PyNrmfjR7T6cvD0-humqqMsTa1okTGeF5yacsyV0ZlglPONRbAQGitc6l1IbhEnFNOpVDaorGKF9RYCtmQXG69q-A_OoxttXTRYF2rBn0XK5qXjEMGjG3Qqy1qgo8xoK1WwS1V6CsK1W-kah9pw17stCoaVdugGuPi_sCEKIWk_I9TJlYL34VNp_iP7wc3snJ1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692403022</pqid></control><display><type>article</type><title>Density-Functional Theory for Polymer–Carbon Dioxide Mixtures</title><source>American Chemical Society Journals</source><creator>Xu, Xiaofei ; Cristancho, Diego E ; Costeux, Stéphane ; Wang, Zhen-Gang</creator><creatorcontrib>Xu, Xiaofei ; Cristancho, Diego E ; Costeux, Stéphane ; Wang, Zhen-Gang</creatorcontrib><description>We propose a new density-functional theory (DFT) describing inhomogeneous polymer–carbon dioxide (CO2) mixtures. The theory is constructed by combining the bulk Peng–Robinson equation of state (PR-EOS) with the statistical associating fluid theory (SAFT) and the fundamental measure theory (FMT). The weight density functions from FMT are used to extend the bulk excess Helmholtz free energy of PR-EOS to the inhomogeneous case, while the SAFT is used to describe correlations due to polymer chain connectivity and short-range forces due to weakly polar or association interactions. The additional long-range dispersion contributions are included using a mean-field approach. We apply our DFT to the interfacial properties of polystyrene–CO2 and poly­(methyl methacrylate)–CO2 systems. The calculated interfacial tension values are in good agreement with experimental data at low to intermediate pressures. The inclusion of association energy for CO2 is shown to have a significant effect. We also point out the limitation of the PR-EOS for describing polymer–CO2 mixtures at high pressures (P &gt; 35 MPa).</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie2029267</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Carbon dioxide ; Chemical engineering ; Correlation ; Density ; Dioxides ; Dispersions ; Exact sciences and technology ; Fluid flow ; Inclusions ; Polymethyl methacrylates</subject><ispartof>Industrial &amp; engineering chemistry research, 2012-03, Vol.51 (9), p.3832-3840</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-f59e2246948f996aca354144be70205bbb68bb7548eed14185abfecfa471cf103</citedby><cites>FETCH-LOGICAL-a322t-f59e2246948f996aca354144be70205bbb68bb7548eed14185abfecfa471cf103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie2029267$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie2029267$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25595814$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xiaofei</creatorcontrib><creatorcontrib>Cristancho, Diego E</creatorcontrib><creatorcontrib>Costeux, Stéphane</creatorcontrib><creatorcontrib>Wang, Zhen-Gang</creatorcontrib><title>Density-Functional Theory for Polymer–Carbon Dioxide Mixtures</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>We propose a new density-functional theory (DFT) describing inhomogeneous polymer–carbon dioxide (CO2) mixtures. The theory is constructed by combining the bulk Peng–Robinson equation of state (PR-EOS) with the statistical associating fluid theory (SAFT) and the fundamental measure theory (FMT). The weight density functions from FMT are used to extend the bulk excess Helmholtz free energy of PR-EOS to the inhomogeneous case, while the SAFT is used to describe correlations due to polymer chain connectivity and short-range forces due to weakly polar or association interactions. The additional long-range dispersion contributions are included using a mean-field approach. We apply our DFT to the interfacial properties of polystyrene–CO2 and poly­(methyl methacrylate)–CO2 systems. The calculated interfacial tension values are in good agreement with experimental data at low to intermediate pressures. The inclusion of association energy for CO2 is shown to have a significant effect. We also point out the limitation of the PR-EOS for describing polymer–CO2 mixtures at high pressures (P &gt; 35 MPa).</description><subject>Applied sciences</subject><subject>Carbon dioxide</subject><subject>Chemical engineering</subject><subject>Correlation</subject><subject>Density</subject><subject>Dioxides</subject><subject>Dispersions</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Inclusions</subject><subject>Polymethyl methacrylates</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkLFOwzAURS0EEqUw8AdZkGAIPDt24kwItRSQimAoc2S7z8JVGhc7kZqNf-AP-RKKWpWF6S7nnuEQck7hmgKjNw4ZsJLlxQEZUMEgFcDFIRmAlDIVUopjchLjAgCE4HxAbsfYRNf26aRrTOt8o-pk9o4-9In1IXn1db_E8P35NVJB-yYZO792c0ye3brtAsZTcmRVHfFst0PyNrmfjR7T6cvD0-humqqMsTa1okTGeF5yacsyV0ZlglPONRbAQGitc6l1IbhEnFNOpVDaorGKF9RYCtmQXG69q-A_OoxttXTRYF2rBn0XK5qXjEMGjG3Qqy1qgo8xoK1WwS1V6CsK1W-kah9pw17stCoaVdugGuPi_sCEKIWk_I9TJlYL34VNp_iP7wc3snJ1</recordid><startdate>20120307</startdate><enddate>20120307</enddate><creator>Xu, Xiaofei</creator><creator>Cristancho, Diego E</creator><creator>Costeux, Stéphane</creator><creator>Wang, Zhen-Gang</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20120307</creationdate><title>Density-Functional Theory for Polymer–Carbon Dioxide Mixtures</title><author>Xu, Xiaofei ; Cristancho, Diego E ; Costeux, Stéphane ; Wang, Zhen-Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-f59e2246948f996aca354144be70205bbb68bb7548eed14185abfecfa471cf103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Carbon dioxide</topic><topic>Chemical engineering</topic><topic>Correlation</topic><topic>Density</topic><topic>Dioxides</topic><topic>Dispersions</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Inclusions</topic><topic>Polymethyl methacrylates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiaofei</creatorcontrib><creatorcontrib>Cristancho, Diego E</creatorcontrib><creatorcontrib>Costeux, Stéphane</creatorcontrib><creatorcontrib>Wang, Zhen-Gang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiaofei</au><au>Cristancho, Diego E</au><au>Costeux, Stéphane</au><au>Wang, Zhen-Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density-Functional Theory for Polymer–Carbon Dioxide Mixtures</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2012-03-07</date><risdate>2012</risdate><volume>51</volume><issue>9</issue><spage>3832</spage><epage>3840</epage><pages>3832-3840</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>We propose a new density-functional theory (DFT) describing inhomogeneous polymer–carbon dioxide (CO2) mixtures. The theory is constructed by combining the bulk Peng–Robinson equation of state (PR-EOS) with the statistical associating fluid theory (SAFT) and the fundamental measure theory (FMT). The weight density functions from FMT are used to extend the bulk excess Helmholtz free energy of PR-EOS to the inhomogeneous case, while the SAFT is used to describe correlations due to polymer chain connectivity and short-range forces due to weakly polar or association interactions. The additional long-range dispersion contributions are included using a mean-field approach. We apply our DFT to the interfacial properties of polystyrene–CO2 and poly­(methyl methacrylate)–CO2 systems. The calculated interfacial tension values are in good agreement with experimental data at low to intermediate pressures. The inclusion of association energy for CO2 is shown to have a significant effect. We also point out the limitation of the PR-EOS for describing polymer–CO2 mixtures at high pressures (P &gt; 35 MPa).</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie2029267</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2012-03, Vol.51 (9), p.3832-3840
issn 0888-5885
1520-5045
language eng
recordid cdi_proquest_miscellaneous_1692403022
source American Chemical Society Journals
subjects Applied sciences
Carbon dioxide
Chemical engineering
Correlation
Density
Dioxides
Dispersions
Exact sciences and technology
Fluid flow
Inclusions
Polymethyl methacrylates
title Density-Functional Theory for Polymer–Carbon Dioxide Mixtures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density-Functional%20Theory%20for%20Polymer%E2%80%93Carbon%20Dioxide%20Mixtures&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Xu,%20Xiaofei&rft.date=2012-03-07&rft.volume=51&rft.issue=9&rft.spage=3832&rft.epage=3840&rft.pages=3832-3840&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie2029267&rft_dat=%3Cproquest_cross%3E1692403022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692403022&rft_id=info:pmid/&rfr_iscdi=true