Uncertainty resulting from multiple data usage in statistical downscaling

Statistical downscaling (SD), used for regional climate projections with coarse resolution general circulation model (GCM) outputs, is characterized by uncertainties resulting from multiple models. Here we observe another source of uncertainty resulting from the use of multiple observed and reanalys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2014-06, Vol.41 (11), p.4013-4019
Hauptverfasser: Kannan, S., Ghosh, Subimal, Mishra, Vimal, Salvi, Kaustubh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4019
container_issue 11
container_start_page 4013
container_title Geophysical research letters
container_volume 41
creator Kannan, S.
Ghosh, Subimal
Mishra, Vimal
Salvi, Kaustubh
description Statistical downscaling (SD), used for regional climate projections with coarse resolution general circulation model (GCM) outputs, is characterized by uncertainties resulting from multiple models. Here we observe another source of uncertainty resulting from the use of multiple observed and reanalysis data products in model calibration. In the training of SD, for Indian Summer Monsoon Rainfall (ISMR), we use two reanalysis data as predictors and three gridded data products for ISMR from different sources. We observe that the uncertainty resulting from six possible training options is comparable to that resulting from multiple GCMs. Though the original GCM simulations project spatially uniform increasing change of ISMR, at the end of 21st century, the same is not obtained with SD, which projects spatially heterogeneous and mixed changes of ISMR. This is due to the differences in statistical relationship between rainfall and predictors in GCM simulations and observed/reanalysis data, and SD considers the latter. Key Points Data uncertainty is higher than that due to multiple GCMs in downscaling Downscaled results show disparities comparing to original GCM projections Statistical downscaling suffers from the assumption of stationarity
doi_str_mv 10.1002/2014GL060089
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692401279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3545547211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4767-c0a17dae9ee9a65805e62822cdc87fa7baa52065a753d08f5ffebf985540b6aa3</originalsourceid><addsrcrecordid>eNqF0U9LwzAYBvAgCs7pzQ9Q8OLB6pu0SZqjiM7BnKAOvYV3bTo6-2cmLXPf3oyKiId5yhvyewLJQ8gphUsKwK4Y0Hg0AQGQqD0yoCqOwwRA7pMBgPIzk-KQHDm3BIAIIjog41mdGttiUbebwBrXlW1RL4LcNlVQbTer0gQZthh0DhcmKOrAtdgWri1SLIOsWdfODz5zTA5yLJ05-V6HZHZ3-3JzH04eR-Ob60mYxlLIMAWkMkOjjFEoeALcCJYwlmZpInOUc0TOQHCUPMogyXmem3muEs5jmAvEaEjO-3tXtvnojGt1VbjUlCXWpumcpkKxGCiT6n_KuZL-Z5jw9OwPXTadrf1DNFUUPJNC7VQiZsAZ5bFXF71KbeOcNble2aJCu9EU9LYo_bsoz1nP10VpNjutHj1NOBVC-lDYh3wT5vMnhPZd-1PJ9et0pAV_Sx6Ymurn6AsuZKGa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642052154</pqid></control><display><type>article</type><title>Uncertainty resulting from multiple data usage in statistical downscaling</title><source>Wiley Online Library AGU Free Content</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Kannan, S. ; Ghosh, Subimal ; Mishra, Vimal ; Salvi, Kaustubh</creator><creatorcontrib>Kannan, S. ; Ghosh, Subimal ; Mishra, Vimal ; Salvi, Kaustubh</creatorcontrib><description>Statistical downscaling (SD), used for regional climate projections with coarse resolution general circulation model (GCM) outputs, is characterized by uncertainties resulting from multiple models. Here we observe another source of uncertainty resulting from the use of multiple observed and reanalysis data products in model calibration. In the training of SD, for Indian Summer Monsoon Rainfall (ISMR), we use two reanalysis data as predictors and three gridded data products for ISMR from different sources. We observe that the uncertainty resulting from six possible training options is comparable to that resulting from multiple GCMs. Though the original GCM simulations project spatially uniform increasing change of ISMR, at the end of 21st century, the same is not obtained with SD, which projects spatially heterogeneous and mixed changes of ISMR. This is due to the differences in statistical relationship between rainfall and predictors in GCM simulations and observed/reanalysis data, and SD considers the latter. Key Points Data uncertainty is higher than that due to multiple GCMs in downscaling Downscaled results show disparities comparing to original GCM projections Statistical downscaling suffers from the assumption of stationarity</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2014GL060089</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Calibration ; Circulation ; Climate ; climate change ; Computer simulation ; Data ; Data processing ; General circulation ; General circulation models ; Indian monsoon ; Mathematical models ; Meteorology ; Monsoon rainfall ; Monsoons ; Products ; Projection ; Rain ; Rainfall ; Regional climates ; Simulation ; Statistical downscaling ; Statistics ; Summer ; Summer monsoon ; Training ; Uncertainty</subject><ispartof>Geophysical research letters, 2014-06, Vol.41 (11), p.4013-4019</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4767-c0a17dae9ee9a65805e62822cdc87fa7baa52065a753d08f5ffebf985540b6aa3</citedby><cites>FETCH-LOGICAL-c4767-c0a17dae9ee9a65805e62822cdc87fa7baa52065a753d08f5ffebf985540b6aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014GL060089$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014GL060089$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Kannan, S.</creatorcontrib><creatorcontrib>Ghosh, Subimal</creatorcontrib><creatorcontrib>Mishra, Vimal</creatorcontrib><creatorcontrib>Salvi, Kaustubh</creatorcontrib><title>Uncertainty resulting from multiple data usage in statistical downscaling</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Statistical downscaling (SD), used for regional climate projections with coarse resolution general circulation model (GCM) outputs, is characterized by uncertainties resulting from multiple models. Here we observe another source of uncertainty resulting from the use of multiple observed and reanalysis data products in model calibration. In the training of SD, for Indian Summer Monsoon Rainfall (ISMR), we use two reanalysis data as predictors and three gridded data products for ISMR from different sources. We observe that the uncertainty resulting from six possible training options is comparable to that resulting from multiple GCMs. Though the original GCM simulations project spatially uniform increasing change of ISMR, at the end of 21st century, the same is not obtained with SD, which projects spatially heterogeneous and mixed changes of ISMR. This is due to the differences in statistical relationship between rainfall and predictors in GCM simulations and observed/reanalysis data, and SD considers the latter. Key Points Data uncertainty is higher than that due to multiple GCMs in downscaling Downscaled results show disparities comparing to original GCM projections Statistical downscaling suffers from the assumption of stationarity</description><subject>Calibration</subject><subject>Circulation</subject><subject>Climate</subject><subject>climate change</subject><subject>Computer simulation</subject><subject>Data</subject><subject>Data processing</subject><subject>General circulation</subject><subject>General circulation models</subject><subject>Indian monsoon</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Monsoon rainfall</subject><subject>Monsoons</subject><subject>Products</subject><subject>Projection</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Regional climates</subject><subject>Simulation</subject><subject>Statistical downscaling</subject><subject>Statistics</subject><subject>Summer</subject><subject>Summer monsoon</subject><subject>Training</subject><subject>Uncertainty</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0U9LwzAYBvAgCs7pzQ9Q8OLB6pu0SZqjiM7BnKAOvYV3bTo6-2cmLXPf3oyKiId5yhvyewLJQ8gphUsKwK4Y0Hg0AQGQqD0yoCqOwwRA7pMBgPIzk-KQHDm3BIAIIjog41mdGttiUbebwBrXlW1RL4LcNlVQbTer0gQZthh0DhcmKOrAtdgWri1SLIOsWdfODz5zTA5yLJ05-V6HZHZ3-3JzH04eR-Ob60mYxlLIMAWkMkOjjFEoeALcCJYwlmZpInOUc0TOQHCUPMogyXmem3muEs5jmAvEaEjO-3tXtvnojGt1VbjUlCXWpumcpkKxGCiT6n_KuZL-Z5jw9OwPXTadrf1DNFUUPJNC7VQiZsAZ5bFXF71KbeOcNble2aJCu9EU9LYo_bsoz1nP10VpNjutHj1NOBVC-lDYh3wT5vMnhPZd-1PJ9et0pAV_Sx6Ymurn6AsuZKGa</recordid><startdate>20140616</startdate><enddate>20140616</enddate><creator>Kannan, S.</creator><creator>Ghosh, Subimal</creator><creator>Mishra, Vimal</creator><creator>Salvi, Kaustubh</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20140616</creationdate><title>Uncertainty resulting from multiple data usage in statistical downscaling</title><author>Kannan, S. ; Ghosh, Subimal ; Mishra, Vimal ; Salvi, Kaustubh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4767-c0a17dae9ee9a65805e62822cdc87fa7baa52065a753d08f5ffebf985540b6aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Calibration</topic><topic>Circulation</topic><topic>Climate</topic><topic>climate change</topic><topic>Computer simulation</topic><topic>Data</topic><topic>Data processing</topic><topic>General circulation</topic><topic>General circulation models</topic><topic>Indian monsoon</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Monsoon rainfall</topic><topic>Monsoons</topic><topic>Products</topic><topic>Projection</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Regional climates</topic><topic>Simulation</topic><topic>Statistical downscaling</topic><topic>Statistics</topic><topic>Summer</topic><topic>Summer monsoon</topic><topic>Training</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kannan, S.</creatorcontrib><creatorcontrib>Ghosh, Subimal</creatorcontrib><creatorcontrib>Mishra, Vimal</creatorcontrib><creatorcontrib>Salvi, Kaustubh</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kannan, S.</au><au>Ghosh, Subimal</au><au>Mishra, Vimal</au><au>Salvi, Kaustubh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty resulting from multiple data usage in statistical downscaling</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2014-06-16</date><risdate>2014</risdate><volume>41</volume><issue>11</issue><spage>4013</spage><epage>4019</epage><pages>4013-4019</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Statistical downscaling (SD), used for regional climate projections with coarse resolution general circulation model (GCM) outputs, is characterized by uncertainties resulting from multiple models. Here we observe another source of uncertainty resulting from the use of multiple observed and reanalysis data products in model calibration. In the training of SD, for Indian Summer Monsoon Rainfall (ISMR), we use two reanalysis data as predictors and three gridded data products for ISMR from different sources. We observe that the uncertainty resulting from six possible training options is comparable to that resulting from multiple GCMs. Though the original GCM simulations project spatially uniform increasing change of ISMR, at the end of 21st century, the same is not obtained with SD, which projects spatially heterogeneous and mixed changes of ISMR. This is due to the differences in statistical relationship between rainfall and predictors in GCM simulations and observed/reanalysis data, and SD considers the latter. Key Points Data uncertainty is higher than that due to multiple GCMs in downscaling Downscaled results show disparities comparing to original GCM projections Statistical downscaling suffers from the assumption of stationarity</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014GL060089</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2014-06, Vol.41 (11), p.4013-4019
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1692401279
source Wiley Online Library AGU Free Content; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Calibration
Circulation
Climate
climate change
Computer simulation
Data
Data processing
General circulation
General circulation models
Indian monsoon
Mathematical models
Meteorology
Monsoon rainfall
Monsoons
Products
Projection
Rain
Rainfall
Regional climates
Simulation
Statistical downscaling
Statistics
Summer
Summer monsoon
Training
Uncertainty
title Uncertainty resulting from multiple data usage in statistical downscaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20resulting%20from%20multiple%20data%20usage%20in%20statistical%20downscaling&rft.jtitle=Geophysical%20research%20letters&rft.au=Kannan,%20S.&rft.date=2014-06-16&rft.volume=41&rft.issue=11&rft.spage=4013&rft.epage=4019&rft.pages=4013-4019&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2014GL060089&rft_dat=%3Cproquest_cross%3E3545547211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642052154&rft_id=info:pmid/&rfr_iscdi=true