Enhanced early osteogenic differentiation by silicon-substituted hydroxyapatite ceramics fabricated via ultrasonic spray pyrolysis route

The influence of silicon-substituted hydroxyapatite (Si-HAp) on osteogenic differentiation was assessed by biological analysis. Si-HAp was prepared by ultrasonic spray pyrolysis (USSP) technique using various amounts of Si (0, 0.8, and 1.6 mass%). Chemical analysis revealed that Si was incorporated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2012-12, Vol.23 (12), p.2923-2932
Hauptverfasser: Honda, Michiyo, Kikushima, Koichi, Kawanobe, Yusuke, Konishi, Toshiisa, Mizumoto, Minori, Aizawa, Mamoru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2932
container_issue 12
container_start_page 2923
container_title Journal of materials science. Materials in medicine
container_volume 23
creator Honda, Michiyo
Kikushima, Koichi
Kawanobe, Yusuke
Konishi, Toshiisa
Mizumoto, Minori
Aizawa, Mamoru
description The influence of silicon-substituted hydroxyapatite (Si-HAp) on osteogenic differentiation was assessed by biological analysis. Si-HAp was prepared by ultrasonic spray pyrolysis (USSP) technique using various amounts of Si (0, 0.8, and 1.6 mass%). Chemical analysis revealed that Si was incorporated into the hydroxyapatite (HAp) lattice with no other crystalline phase and which caused the change of crystal structure. Biological analyses showed that the Si contents affected the cell proliferation and morphology, suggesting that there is an optimal Si content for cell culture. As for differentiation, alkaline phosphatase activity and osteocalcin production of Si-HAp were higher than those of HAp. Gene expression profiles also revealed that substitution of Si (0.8 mass%) up-regulated the expression levels of osteocalcin and especially Runx2 , a master gene for osteoblast development. These results suggest that incorporating Si into the HAp lattice may enhance the bioactivity, particularly during early osteoblast development.
doi_str_mv 10.1007/s10856-012-4744-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692397488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1220570283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-de5580ae1da1ad7389754f5a007afe1c6233615907cddb84e7023f2c1e32ca483</originalsourceid><addsrcrecordid>eNqNkkuLFDEUhYMoTjv6A9xIQAQ3pXlWkqUM4wMG3Og63EqlZjJUV8okJV3_wJ9tim4fCEKvsvnuuSfnHoSeU_KGEqLeZkq0bBtCWSOUEM3hAdpRqXgjNNcP0Y4YqRohOblAT3K-J4QII-VjdMGYNkRSs0M_rqc7mJzvsYc0rjjm4uOtn4LDfRgGn_xUApQQJ9ytOIcxuDg1eelyCWUpde5u7VM8rDBXqnjsfIJ9cBkP0KXgYEO-B8DLWBLkuAnnOcGK5zXFcc0h4xSr0FP0aIAx-2en9xJ9fX_95epjc_P5w6erdzeNk60qTe-l1AQ87YFCr7g2SopBQo0DBk9dyzhvqTREub7vtPCKMD4wRz1nDmoul-j1UXdO8dvic7H7kJ0fR5h8XLKlrWHcKKHPQJmhLVGEkzNQqVTLGWVnoIzI6lrzir78B72PS5pqPJZSo6pJSbbd9Ei5FHNOfrBzCntIq6XEbj2xx57Y2hO79cQe6syLk_LS7X3_e-JXMSrw6gRAdjAOqZYk5D9cqwTTYvsNO3L1qGG69ekvi__d_hPUl9ep</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1197748500</pqid></control><display><type>article</type><title>Enhanced early osteogenic differentiation by silicon-substituted hydroxyapatite ceramics fabricated via ultrasonic spray pyrolysis route</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Honda, Michiyo ; Kikushima, Koichi ; Kawanobe, Yusuke ; Konishi, Toshiisa ; Mizumoto, Minori ; Aizawa, Mamoru</creator><creatorcontrib>Honda, Michiyo ; Kikushima, Koichi ; Kawanobe, Yusuke ; Konishi, Toshiisa ; Mizumoto, Minori ; Aizawa, Mamoru</creatorcontrib><description>The influence of silicon-substituted hydroxyapatite (Si-HAp) on osteogenic differentiation was assessed by biological analysis. Si-HAp was prepared by ultrasonic spray pyrolysis (USSP) technique using various amounts of Si (0, 0.8, and 1.6 mass%). Chemical analysis revealed that Si was incorporated into the hydroxyapatite (HAp) lattice with no other crystalline phase and which caused the change of crystal structure. Biological analyses showed that the Si contents affected the cell proliferation and morphology, suggesting that there is an optimal Si content for cell culture. As for differentiation, alkaline phosphatase activity and osteocalcin production of Si-HAp were higher than those of HAp. Gene expression profiles also revealed that substitution of Si (0.8 mass%) up-regulated the expression levels of osteocalcin and especially Runx2 , a master gene for osteoblast development. These results suggest that incorporating Si into the HAp lattice may enhance the bioactivity, particularly during early osteoblast development.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-012-4744-x</identifier><identifier>PMID: 22890519</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>3T3 Cells ; Alkaline Phosphatase - metabolism ; Animals ; Biocompatibility ; Biological ; Biological and medical sciences ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Cell culture ; Cell Culture Techniques - methods ; Cell Differentiation ; Ceramics ; Ceramics - chemistry ; Chemistry and Materials Science ; Composites ; Crystal structure ; Differentiation ; Durapatite - chemistry ; Glass ; Hydroxyapatite ; Materials Science ; Materials Testing ; Medical sciences ; Mice ; Microscopy, Fluorescence - methods ; Natural Materials ; Osteoblasts - metabolism ; Osteocalcin - metabolism ; Osteocytes - cytology ; Osteogenesis ; Polymer Sciences ; Regenerative Medicine/Tissue Engineering ; Silicon ; Silicon - chemistry ; Solvents - chemistry ; Spectroscopy, Fourier Transform Infrared - methods ; Spray pyrolysis ; Surfaces and Interfaces ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Temperature ; Thin Films ; Time Factors ; Ultrasonics ; X-Ray Diffraction - methods</subject><ispartof>Journal of materials science. Materials in medicine, 2012-12, Vol.23 (12), p.2923-2932</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>2014 INIST-CNRS</rights><rights>Springer Science+Business Media New York 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-de5580ae1da1ad7389754f5a007afe1c6233615907cddb84e7023f2c1e32ca483</citedby><cites>FETCH-LOGICAL-c567t-de5580ae1da1ad7389754f5a007afe1c6233615907cddb84e7023f2c1e32ca483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-012-4744-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-012-4744-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26742842$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22890519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Honda, Michiyo</creatorcontrib><creatorcontrib>Kikushima, Koichi</creatorcontrib><creatorcontrib>Kawanobe, Yusuke</creatorcontrib><creatorcontrib>Konishi, Toshiisa</creatorcontrib><creatorcontrib>Mizumoto, Minori</creatorcontrib><creatorcontrib>Aizawa, Mamoru</creatorcontrib><title>Enhanced early osteogenic differentiation by silicon-substituted hydroxyapatite ceramics fabricated via ultrasonic spray pyrolysis route</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>The influence of silicon-substituted hydroxyapatite (Si-HAp) on osteogenic differentiation was assessed by biological analysis. Si-HAp was prepared by ultrasonic spray pyrolysis (USSP) technique using various amounts of Si (0, 0.8, and 1.6 mass%). Chemical analysis revealed that Si was incorporated into the hydroxyapatite (HAp) lattice with no other crystalline phase and which caused the change of crystal structure. Biological analyses showed that the Si contents affected the cell proliferation and morphology, suggesting that there is an optimal Si content for cell culture. As for differentiation, alkaline phosphatase activity and osteocalcin production of Si-HAp were higher than those of HAp. Gene expression profiles also revealed that substitution of Si (0.8 mass%) up-regulated the expression levels of osteocalcin and especially Runx2 , a master gene for osteoblast development. These results suggest that incorporating Si into the HAp lattice may enhance the bioactivity, particularly during early osteoblast development.</description><subject>3T3 Cells</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biological</subject><subject>Biological and medical sciences</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Cell culture</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Differentiation</subject><subject>Ceramics</subject><subject>Ceramics - chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Crystal structure</subject><subject>Differentiation</subject><subject>Durapatite - chemistry</subject><subject>Glass</subject><subject>Hydroxyapatite</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Natural Materials</subject><subject>Osteoblasts - metabolism</subject><subject>Osteocalcin - metabolism</subject><subject>Osteocytes - cytology</subject><subject>Osteogenesis</subject><subject>Polymer Sciences</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Silicon</subject><subject>Silicon - chemistry</subject><subject>Solvents - chemistry</subject><subject>Spectroscopy, Fourier Transform Infrared - methods</subject><subject>Spray pyrolysis</subject><subject>Surfaces and Interfaces</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Temperature</subject><subject>Thin Films</subject><subject>Time Factors</subject><subject>Ultrasonics</subject><subject>X-Ray Diffraction - methods</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkkuLFDEUhYMoTjv6A9xIQAQ3pXlWkqUM4wMG3Og63EqlZjJUV8okJV3_wJ9tim4fCEKvsvnuuSfnHoSeU_KGEqLeZkq0bBtCWSOUEM3hAdpRqXgjNNcP0Y4YqRohOblAT3K-J4QII-VjdMGYNkRSs0M_rqc7mJzvsYc0rjjm4uOtn4LDfRgGn_xUApQQJ9ytOIcxuDg1eelyCWUpde5u7VM8rDBXqnjsfIJ9cBkP0KXgYEO-B8DLWBLkuAnnOcGK5zXFcc0h4xSr0FP0aIAx-2en9xJ9fX_95epjc_P5w6erdzeNk60qTe-l1AQ87YFCr7g2SopBQo0DBk9dyzhvqTREub7vtPCKMD4wRz1nDmoul-j1UXdO8dvic7H7kJ0fR5h8XLKlrWHcKKHPQJmhLVGEkzNQqVTLGWVnoIzI6lrzir78B72PS5pqPJZSo6pJSbbd9Ei5FHNOfrBzCntIq6XEbj2xx57Y2hO79cQe6syLk_LS7X3_e-JXMSrw6gRAdjAOqZYk5D9cqwTTYvsNO3L1qGG69ekvi__d_hPUl9ep</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Honda, Michiyo</creator><creator>Kikushima, Koichi</creator><creator>Kawanobe, Yusuke</creator><creator>Konishi, Toshiisa</creator><creator>Mizumoto, Minori</creator><creator>Aizawa, Mamoru</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope><scope>7QP</scope></search><sort><creationdate>20121201</creationdate><title>Enhanced early osteogenic differentiation by silicon-substituted hydroxyapatite ceramics fabricated via ultrasonic spray pyrolysis route</title><author>Honda, Michiyo ; Kikushima, Koichi ; Kawanobe, Yusuke ; Konishi, Toshiisa ; Mizumoto, Minori ; Aizawa, Mamoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-de5580ae1da1ad7389754f5a007afe1c6233615907cddb84e7023f2c1e32ca483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>3T3 Cells</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biological</topic><topic>Biological and medical sciences</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Cell culture</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Differentiation</topic><topic>Ceramics</topic><topic>Ceramics - chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Crystal structure</topic><topic>Differentiation</topic><topic>Durapatite - chemistry</topic><topic>Glass</topic><topic>Hydroxyapatite</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Natural Materials</topic><topic>Osteoblasts - metabolism</topic><topic>Osteocalcin - metabolism</topic><topic>Osteocytes - cytology</topic><topic>Osteogenesis</topic><topic>Polymer Sciences</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Silicon</topic><topic>Silicon - chemistry</topic><topic>Solvents - chemistry</topic><topic>Spectroscopy, Fourier Transform Infrared - methods</topic><topic>Spray pyrolysis</topic><topic>Surfaces and Interfaces</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Temperature</topic><topic>Thin Films</topic><topic>Time Factors</topic><topic>Ultrasonics</topic><topic>X-Ray Diffraction - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Honda, Michiyo</creatorcontrib><creatorcontrib>Kikushima, Koichi</creatorcontrib><creatorcontrib>Kawanobe, Yusuke</creatorcontrib><creatorcontrib>Konishi, Toshiisa</creatorcontrib><creatorcontrib>Mizumoto, Minori</creatorcontrib><creatorcontrib>Aizawa, Mamoru</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>MEDLINE - Academic</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Honda, Michiyo</au><au>Kikushima, Koichi</au><au>Kawanobe, Yusuke</au><au>Konishi, Toshiisa</au><au>Mizumoto, Minori</au><au>Aizawa, Mamoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced early osteogenic differentiation by silicon-substituted hydroxyapatite ceramics fabricated via ultrasonic spray pyrolysis route</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>23</volume><issue>12</issue><spage>2923</spage><epage>2932</epage><pages>2923-2932</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>The influence of silicon-substituted hydroxyapatite (Si-HAp) on osteogenic differentiation was assessed by biological analysis. Si-HAp was prepared by ultrasonic spray pyrolysis (USSP) technique using various amounts of Si (0, 0.8, and 1.6 mass%). Chemical analysis revealed that Si was incorporated into the hydroxyapatite (HAp) lattice with no other crystalline phase and which caused the change of crystal structure. Biological analyses showed that the Si contents affected the cell proliferation and morphology, suggesting that there is an optimal Si content for cell culture. As for differentiation, alkaline phosphatase activity and osteocalcin production of Si-HAp were higher than those of HAp. Gene expression profiles also revealed that substitution of Si (0.8 mass%) up-regulated the expression levels of osteocalcin and especially Runx2 , a master gene for osteoblast development. These results suggest that incorporating Si into the HAp lattice may enhance the bioactivity, particularly during early osteoblast development.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>22890519</pmid><doi>10.1007/s10856-012-4744-x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4530
ispartof Journal of materials science. Materials in medicine, 2012-12, Vol.23 (12), p.2923-2932
issn 0957-4530
1573-4838
language eng
recordid cdi_proquest_miscellaneous_1692397488
source MEDLINE; SpringerLink Journals
subjects 3T3 Cells
Alkaline Phosphatase - metabolism
Animals
Biocompatibility
Biological
Biological and medical sciences
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical materials
Cell culture
Cell Culture Techniques - methods
Cell Differentiation
Ceramics
Ceramics - chemistry
Chemistry and Materials Science
Composites
Crystal structure
Differentiation
Durapatite - chemistry
Glass
Hydroxyapatite
Materials Science
Materials Testing
Medical sciences
Mice
Microscopy, Fluorescence - methods
Natural Materials
Osteoblasts - metabolism
Osteocalcin - metabolism
Osteocytes - cytology
Osteogenesis
Polymer Sciences
Regenerative Medicine/Tissue Engineering
Silicon
Silicon - chemistry
Solvents - chemistry
Spectroscopy, Fourier Transform Infrared - methods
Spray pyrolysis
Surfaces and Interfaces
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
Temperature
Thin Films
Time Factors
Ultrasonics
X-Ray Diffraction - methods
title Enhanced early osteogenic differentiation by silicon-substituted hydroxyapatite ceramics fabricated via ultrasonic spray pyrolysis route
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A38%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20early%20osteogenic%20differentiation%20by%20silicon-substituted%20hydroxyapatite%20ceramics%20fabricated%20via%20ultrasonic%20spray%20pyrolysis%20route&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Honda,%20Michiyo&rft.date=2012-12-01&rft.volume=23&rft.issue=12&rft.spage=2923&rft.epage=2932&rft.pages=2923-2932&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-012-4744-x&rft_dat=%3Cproquest_cross%3E1220570283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1197748500&rft_id=info:pmid/22890519&rfr_iscdi=true