Critical buckling strength prediction of pultruded glass fiber reinforced polymeric composite columns
Glass fiber reinforced polymeric composites are unique and unlike conventional construction materials (steel, timber, concrete), inadequate design standards are holding back the high volume use of fiber reinforced polymer composites in construction. To alleviate part of this difficulty, this paper i...
Gespeichert in:
Veröffentlicht in: | Journal of composite materials 2014-12, Vol.48 (29), p.3685-3702 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3702 |
---|---|
container_issue | 29 |
container_start_page | 3685 |
container_title | Journal of composite materials |
container_volume | 48 |
creator | GangaRao, Hota VS Blandford, Mathew M |
description | Glass fiber reinforced polymeric composites are unique and unlike conventional construction materials (steel, timber, concrete), inadequate design standards are holding back the high volume use of fiber reinforced polymer composites in construction. To alleviate part of this difficulty, this paper investigates several column failure prediction models. Composite material properties were developed by testing coupons and 0.30 m long components under compression. Furthermore, a strain energy density failure model developed at West Virginia University in tension and bending was extended to axial compression, predicting the critical buckling load within 10% of experimental failure for different column lengths tested (1.83 m, 2.60 m, 2.75 m, 3.05 m). In conjunction with failure analyses, load–deflection effects enhanced by eccentricity due to loading and initial out-of-straightness were also investigated. The current research found that the preliminary design limit of column height (h/220) is acceptable under axial loads; however, manufacturing related imperfection limit state of h/700 is slightly low. |
doi_str_mv | 10.1177/0021998314521060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692389337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0021998314521060</sage_id><sourcerecordid>1692389337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-b59a10e6b969b28dc745aac7a7d2fd7c7f277caf871f30649e5a8300c1742e043</originalsourceid><addsrcrecordid>eNp1kL1PxDAMxSMEEsfBzpiRpeA0bdOM6MSXdBILSGxVmjolR9qUJB3uv6enY0JisuX3e5b9CLlmcMuYEHcAOZOy5qwocwYVnJAVKzlkQvKPU7I6yNlBPycXMe4AQLCiWhHcBJusVo62s_5yduxpTAHHPn3SKWBndbJ-pN7QaXYpzB12tHcqRmpsi4EGtKPxQS_jybv9gMFqqv0w-WgTLp2bhzFekjOjXMSr37om748Pb5vnbPv69LK532Z6uTtlbSkVA6xaWck2rzstilIpLZToctMJLUwuhFamFsxwqAqJpao5gGaiyBEKviY3x71T8N8zxtQMNmp0To3o59iwSua8lpyLBYUjqoOPMaBppmAHFfYNg-aQaPM30cWSHS1R9djs_BzG5Zn_-R8Bt3es</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692389337</pqid></control><display><type>article</type><title>Critical buckling strength prediction of pultruded glass fiber reinforced polymeric composite columns</title><source>SAGE Journals Online</source><creator>GangaRao, Hota VS ; Blandford, Mathew M</creator><creatorcontrib>GangaRao, Hota VS ; Blandford, Mathew M</creatorcontrib><description>Glass fiber reinforced polymeric composites are unique and unlike conventional construction materials (steel, timber, concrete), inadequate design standards are holding back the high volume use of fiber reinforced polymer composites in construction. To alleviate part of this difficulty, this paper investigates several column failure prediction models. Composite material properties were developed by testing coupons and 0.30 m long components under compression. Furthermore, a strain energy density failure model developed at West Virginia University in tension and bending was extended to axial compression, predicting the critical buckling load within 10% of experimental failure for different column lengths tested (1.83 m, 2.60 m, 2.75 m, 3.05 m). In conjunction with failure analyses, load–deflection effects enhanced by eccentricity due to loading and initial out-of-straightness were also investigated. The current research found that the preliminary design limit of column height (h/220) is acceptable under axial loads; however, manufacturing related imperfection limit state of h/700 is slightly low.</description><identifier>ISSN: 0021-9983</identifier><identifier>EISSN: 1530-793X</identifier><identifier>DOI: 10.1177/0021998314521060</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Buckling ; Composite materials ; Compression tests ; Construction materials ; Failure ; Glass fiber reinforced plastics ; Mathematical models</subject><ispartof>Journal of composite materials, 2014-12, Vol.48 (29), p.3685-3702</ispartof><rights>The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-b59a10e6b969b28dc745aac7a7d2fd7c7f277caf871f30649e5a8300c1742e043</citedby><cites>FETCH-LOGICAL-c314t-b59a10e6b969b28dc745aac7a7d2fd7c7f277caf871f30649e5a8300c1742e043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0021998314521060$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0021998314521060$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>GangaRao, Hota VS</creatorcontrib><creatorcontrib>Blandford, Mathew M</creatorcontrib><title>Critical buckling strength prediction of pultruded glass fiber reinforced polymeric composite columns</title><title>Journal of composite materials</title><description>Glass fiber reinforced polymeric composites are unique and unlike conventional construction materials (steel, timber, concrete), inadequate design standards are holding back the high volume use of fiber reinforced polymer composites in construction. To alleviate part of this difficulty, this paper investigates several column failure prediction models. Composite material properties were developed by testing coupons and 0.30 m long components under compression. Furthermore, a strain energy density failure model developed at West Virginia University in tension and bending was extended to axial compression, predicting the critical buckling load within 10% of experimental failure for different column lengths tested (1.83 m, 2.60 m, 2.75 m, 3.05 m). In conjunction with failure analyses, load–deflection effects enhanced by eccentricity due to loading and initial out-of-straightness were also investigated. The current research found that the preliminary design limit of column height (h/220) is acceptable under axial loads; however, manufacturing related imperfection limit state of h/700 is slightly low.</description><subject>Buckling</subject><subject>Composite materials</subject><subject>Compression tests</subject><subject>Construction materials</subject><subject>Failure</subject><subject>Glass fiber reinforced plastics</subject><subject>Mathematical models</subject><issn>0021-9983</issn><issn>1530-793X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PxDAMxSMEEsfBzpiRpeA0bdOM6MSXdBILSGxVmjolR9qUJB3uv6enY0JisuX3e5b9CLlmcMuYEHcAOZOy5qwocwYVnJAVKzlkQvKPU7I6yNlBPycXMe4AQLCiWhHcBJusVo62s_5yduxpTAHHPn3SKWBndbJ-pN7QaXYpzB12tHcqRmpsi4EGtKPxQS_jybv9gMFqqv0w-WgTLp2bhzFekjOjXMSr37om748Pb5vnbPv69LK532Z6uTtlbSkVA6xaWck2rzstilIpLZToctMJLUwuhFamFsxwqAqJpao5gGaiyBEKviY3x71T8N8zxtQMNmp0To3o59iwSua8lpyLBYUjqoOPMaBppmAHFfYNg-aQaPM30cWSHS1R9djs_BzG5Zn_-R8Bt3es</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>GangaRao, Hota VS</creator><creator>Blandford, Mathew M</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20141201</creationdate><title>Critical buckling strength prediction of pultruded glass fiber reinforced polymeric composite columns</title><author>GangaRao, Hota VS ; Blandford, Mathew M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-b59a10e6b969b28dc745aac7a7d2fd7c7f277caf871f30649e5a8300c1742e043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Buckling</topic><topic>Composite materials</topic><topic>Compression tests</topic><topic>Construction materials</topic><topic>Failure</topic><topic>Glass fiber reinforced plastics</topic><topic>Mathematical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GangaRao, Hota VS</creatorcontrib><creatorcontrib>Blandford, Mathew M</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GangaRao, Hota VS</au><au>Blandford, Mathew M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical buckling strength prediction of pultruded glass fiber reinforced polymeric composite columns</atitle><jtitle>Journal of composite materials</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>48</volume><issue>29</issue><spage>3685</spage><epage>3702</epage><pages>3685-3702</pages><issn>0021-9983</issn><eissn>1530-793X</eissn><abstract>Glass fiber reinforced polymeric composites are unique and unlike conventional construction materials (steel, timber, concrete), inadequate design standards are holding back the high volume use of fiber reinforced polymer composites in construction. To alleviate part of this difficulty, this paper investigates several column failure prediction models. Composite material properties were developed by testing coupons and 0.30 m long components under compression. Furthermore, a strain energy density failure model developed at West Virginia University in tension and bending was extended to axial compression, predicting the critical buckling load within 10% of experimental failure for different column lengths tested (1.83 m, 2.60 m, 2.75 m, 3.05 m). In conjunction with failure analyses, load–deflection effects enhanced by eccentricity due to loading and initial out-of-straightness were also investigated. The current research found that the preliminary design limit of column height (h/220) is acceptable under axial loads; however, manufacturing related imperfection limit state of h/700 is slightly low.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0021998314521060</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9983 |
ispartof | Journal of composite materials, 2014-12, Vol.48 (29), p.3685-3702 |
issn | 0021-9983 1530-793X |
language | eng |
recordid | cdi_proquest_miscellaneous_1692389337 |
source | SAGE Journals Online |
subjects | Buckling Composite materials Compression tests Construction materials Failure Glass fiber reinforced plastics Mathematical models |
title | Critical buckling strength prediction of pultruded glass fiber reinforced polymeric composite columns |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A41%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20buckling%20strength%20prediction%20of%20pultruded%20glass%20fiber%20reinforced%20polymeric%20composite%20columns&rft.jtitle=Journal%20of%20composite%20materials&rft.au=GangaRao,%20Hota%20VS&rft.date=2014-12-01&rft.volume=48&rft.issue=29&rft.spage=3685&rft.epage=3702&rft.pages=3685-3702&rft.issn=0021-9983&rft.eissn=1530-793X&rft_id=info:doi/10.1177/0021998314521060&rft_dat=%3Cproquest_cross%3E1692389337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692389337&rft_id=info:pmid/&rft_sage_id=10.1177_0021998314521060&rfr_iscdi=true |