Production of high strength Al–Al₂O₃ composite by accumulative roll bonding
Recently accumulative roll bonding has been used as a novel method to produce particle reinforced metal matrix composites. In this study, aluminum matrix composite reinforced by submicron particulate alumina was successfully produced and the effects of number of ARB cycles and the amount of alumina...
Gespeichert in:
Veröffentlicht in: | Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2012-02, Vol.43 (2), p.261-267 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently accumulative roll bonding has been used as a novel method to produce particle reinforced metal matrix composites. In this study, aluminum matrix composite reinforced by submicron particulate alumina was successfully produced and the effects of number of ARB cycles and the amount of alumina content on the microstructure and mechanical properties of composites were investigated. According to the results of tensile tests, it is shown that the yield and tensile strengths of the composite are increased with the number of ARB cycles. Scanning electron microscopy (SEM) reveals that particles have a random and uniform distribution in the matrix by the ARB cycles and a strong mechanical bonding takes place at the interface of particle-matrix. It is also found that the tensile strength of the composite, as a function of alumina content, has a maximum value at 2vol.%, which is 5.1 times higher than that of the annealed aluminum. |
---|---|
ISSN: | 1359-835X 1878-5840 |
DOI: | 10.1016/j.compositesa.2011.10.015 |