High Impedance Droplet–Solid Interface Lipid Bilayer Membranes
A droplet–solid interface lipid bilayer membrane (DSLM) with high impedance was developed through controlling the contact area between an aqueous droplet and electrode. The electrode size can be easily controlled from millimeter to micrometer level. The droplet–solid interface lipid bilayer membrane...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2015-02, Vol.87 (4), p.2094-2099 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2099 |
---|---|
container_issue | 4 |
container_start_page | 2094 |
container_title | Analytical chemistry (Washington) |
container_volume | 87 |
creator | Wang, Xuejing Ma, Shenghua Su, Yingchun Zhang, Ying Bi, Hongmei Zhang, Lixue Han, Xiaojun |
description | A droplet–solid interface lipid bilayer membrane (DSLM) with high impedance was developed through controlling the contact area between an aqueous droplet and electrode. The electrode size can be easily controlled from millimeter to micrometer level. The droplet–solid interface lipid bilayer membranes were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and fluorescence microscopy. The fluorescence recovery after photobleaching (FRAP) was applied to determine the diffusion coefficient of egg PC DSLM to be 2.58 μm2 s–1. The DSLM resistance can reach up to 26.3 GΩ, which was then used to study the ion channel behavior of melittin. The resistivity of the bilayer membrane decreased linearly with the increase of melittin concentration in the membrane. The high impedance and fluidity of DSLM makes it an ideal model cell membrane system for ion channel study and high-throughput drug screening. |
doi_str_mv | 10.1021/ac502953v |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692386109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1656044050</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-94ee02237e72ba4c5e1d92ca28f7802a078f4ae760fd720620ec3496124b649f3</originalsourceid><addsrcrecordid>eNqN0c1Kw0AQB_BFFFurB19AAiLoITo72WySm1o_Wqh4UM9hk0w0JV_uNkJvvoNv6JO4pbWIXjwtw_7478wOY_scTjkgP1OpDxj53tsG63MfwZVhiJusDwCeiwFAj-0YMwXgHLjcZj30pS1Cv8_OR8XzizOuWspUnZJzpZu2pNnn-8dDUxaZM65npHNlbyZFa-vLolRz0s4dVYlWNZldtpWr0tDe6hywp5vrx-HIndzfjocXE1d5gZy5kSACRC-gABMlUp94FmGqMMyDEFBBEOZCUSAhzwIEiUCpJyLJUSRSRLk3YMfL3FY3rx2ZWVwVJqWytE00nYm5jNALJYfoH9SOLwT4YOnhLzptOl3bQRYqtH2gFFadLFWqG2M05XGri0rpecwhXmwgXm_A2oNVYpdUlK3l95dbcLQEKjU_XvsT9AVMs4oC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658062264</pqid></control><display><type>article</type><title>High Impedance Droplet–Solid Interface Lipid Bilayer Membranes</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Wang, Xuejing ; Ma, Shenghua ; Su, Yingchun ; Zhang, Ying ; Bi, Hongmei ; Zhang, Lixue ; Han, Xiaojun</creator><creatorcontrib>Wang, Xuejing ; Ma, Shenghua ; Su, Yingchun ; Zhang, Ying ; Bi, Hongmei ; Zhang, Lixue ; Han, Xiaojun</creatorcontrib><description>A droplet–solid interface lipid bilayer membrane (DSLM) with high impedance was developed through controlling the contact area between an aqueous droplet and electrode. The electrode size can be easily controlled from millimeter to micrometer level. The droplet–solid interface lipid bilayer membranes were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and fluorescence microscopy. The fluorescence recovery after photobleaching (FRAP) was applied to determine the diffusion coefficient of egg PC DSLM to be 2.58 μm2 s–1. The DSLM resistance can reach up to 26.3 GΩ, which was then used to study the ion channel behavior of melittin. The resistivity of the bilayer membrane decreased linearly with the increase of melittin concentration in the membrane. The high impedance and fluidity of DSLM makes it an ideal model cell membrane system for ion channel study and high-throughput drug screening.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac502953v</identifier><identifier>PMID: 25600185</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aqueous solutions ; Biochemistry ; Dielectric Spectroscopy ; Diffusion ; Droplets ; Electric Impedance ; Electrochemical impedance spectroscopy ; Electrodes ; Fluorescence ; Fluorescence Recovery After Photobleaching ; High impedance ; Ion channels ; Lipid Bilayers - chemistry ; Lipids ; Melitten - chemistry ; Membrane Fluidity ; Membranes ; Microscopy, Fluorescence ; Models, Molecular ; Phosphatidylcholines - chemistry ; Voltammetry</subject><ispartof>Analytical chemistry (Washington), 2015-02, Vol.87 (4), p.2094-2099</ispartof><rights>Copyright American Chemical Society Feb 17, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-94ee02237e72ba4c5e1d92ca28f7802a078f4ae760fd720620ec3496124b649f3</citedby><cites>FETCH-LOGICAL-a376t-94ee02237e72ba4c5e1d92ca28f7802a078f4ae760fd720620ec3496124b649f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac502953v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac502953v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25600185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xuejing</creatorcontrib><creatorcontrib>Ma, Shenghua</creatorcontrib><creatorcontrib>Su, Yingchun</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Bi, Hongmei</creatorcontrib><creatorcontrib>Zhang, Lixue</creatorcontrib><creatorcontrib>Han, Xiaojun</creatorcontrib><title>High Impedance Droplet–Solid Interface Lipid Bilayer Membranes</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A droplet–solid interface lipid bilayer membrane (DSLM) with high impedance was developed through controlling the contact area between an aqueous droplet and electrode. The electrode size can be easily controlled from millimeter to micrometer level. The droplet–solid interface lipid bilayer membranes were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and fluorescence microscopy. The fluorescence recovery after photobleaching (FRAP) was applied to determine the diffusion coefficient of egg PC DSLM to be 2.58 μm2 s–1. The DSLM resistance can reach up to 26.3 GΩ, which was then used to study the ion channel behavior of melittin. The resistivity of the bilayer membrane decreased linearly with the increase of melittin concentration in the membrane. The high impedance and fluidity of DSLM makes it an ideal model cell membrane system for ion channel study and high-throughput drug screening.</description><subject>Aqueous solutions</subject><subject>Biochemistry</subject><subject>Dielectric Spectroscopy</subject><subject>Diffusion</subject><subject>Droplets</subject><subject>Electric Impedance</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Fluorescence</subject><subject>Fluorescence Recovery After Photobleaching</subject><subject>High impedance</subject><subject>Ion channels</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Melitten - chemistry</subject><subject>Membrane Fluidity</subject><subject>Membranes</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Molecular</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Voltammetry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c1Kw0AQB_BFFFurB19AAiLoITo72WySm1o_Wqh4UM9hk0w0JV_uNkJvvoNv6JO4pbWIXjwtw_7478wOY_scTjkgP1OpDxj53tsG63MfwZVhiJusDwCeiwFAj-0YMwXgHLjcZj30pS1Cv8_OR8XzizOuWspUnZJzpZu2pNnn-8dDUxaZM65npHNlbyZFa-vLolRz0s4dVYlWNZldtpWr0tDe6hywp5vrx-HIndzfjocXE1d5gZy5kSACRC-gABMlUp94FmGqMMyDEFBBEOZCUSAhzwIEiUCpJyLJUSRSRLk3YMfL3FY3rx2ZWVwVJqWytE00nYm5jNALJYfoH9SOLwT4YOnhLzptOl3bQRYqtH2gFFadLFWqG2M05XGri0rpecwhXmwgXm_A2oNVYpdUlK3l95dbcLQEKjU_XvsT9AVMs4oC</recordid><startdate>20150217</startdate><enddate>20150217</enddate><creator>Wang, Xuejing</creator><creator>Ma, Shenghua</creator><creator>Su, Yingchun</creator><creator>Zhang, Ying</creator><creator>Bi, Hongmei</creator><creator>Zhang, Lixue</creator><creator>Han, Xiaojun</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20150217</creationdate><title>High Impedance Droplet–Solid Interface Lipid Bilayer Membranes</title><author>Wang, Xuejing ; Ma, Shenghua ; Su, Yingchun ; Zhang, Ying ; Bi, Hongmei ; Zhang, Lixue ; Han, Xiaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-94ee02237e72ba4c5e1d92ca28f7802a078f4ae760fd720620ec3496124b649f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aqueous solutions</topic><topic>Biochemistry</topic><topic>Dielectric Spectroscopy</topic><topic>Diffusion</topic><topic>Droplets</topic><topic>Electric Impedance</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Fluorescence</topic><topic>Fluorescence Recovery After Photobleaching</topic><topic>High impedance</topic><topic>Ion channels</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Melitten - chemistry</topic><topic>Membrane Fluidity</topic><topic>Membranes</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Molecular</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xuejing</creatorcontrib><creatorcontrib>Ma, Shenghua</creatorcontrib><creatorcontrib>Su, Yingchun</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Bi, Hongmei</creatorcontrib><creatorcontrib>Zhang, Lixue</creatorcontrib><creatorcontrib>Han, Xiaojun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xuejing</au><au>Ma, Shenghua</au><au>Su, Yingchun</au><au>Zhang, Ying</au><au>Bi, Hongmei</au><au>Zhang, Lixue</au><au>Han, Xiaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Impedance Droplet–Solid Interface Lipid Bilayer Membranes</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2015-02-17</date><risdate>2015</risdate><volume>87</volume><issue>4</issue><spage>2094</spage><epage>2099</epage><pages>2094-2099</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A droplet–solid interface lipid bilayer membrane (DSLM) with high impedance was developed through controlling the contact area between an aqueous droplet and electrode. The electrode size can be easily controlled from millimeter to micrometer level. The droplet–solid interface lipid bilayer membranes were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and fluorescence microscopy. The fluorescence recovery after photobleaching (FRAP) was applied to determine the diffusion coefficient of egg PC DSLM to be 2.58 μm2 s–1. The DSLM resistance can reach up to 26.3 GΩ, which was then used to study the ion channel behavior of melittin. The resistivity of the bilayer membrane decreased linearly with the increase of melittin concentration in the membrane. The high impedance and fluidity of DSLM makes it an ideal model cell membrane system for ion channel study and high-throughput drug screening.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25600185</pmid><doi>10.1021/ac502953v</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2015-02, Vol.87 (4), p.2094-2099 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692386109 |
source | MEDLINE; American Chemical Society Journals |
subjects | Aqueous solutions Biochemistry Dielectric Spectroscopy Diffusion Droplets Electric Impedance Electrochemical impedance spectroscopy Electrodes Fluorescence Fluorescence Recovery After Photobleaching High impedance Ion channels Lipid Bilayers - chemistry Lipids Melitten - chemistry Membrane Fluidity Membranes Microscopy, Fluorescence Models, Molecular Phosphatidylcholines - chemistry Voltammetry |
title | High Impedance Droplet–Solid Interface Lipid Bilayer Membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Impedance%20Droplet%E2%80%93Solid%20Interface%20Lipid%20Bilayer%20Membranes&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Wang,%20Xuejing&rft.date=2015-02-17&rft.volume=87&rft.issue=4&rft.spage=2094&rft.epage=2099&rft.pages=2094-2099&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac502953v&rft_dat=%3Cproquest_cross%3E1656044050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658062264&rft_id=info:pmid/25600185&rfr_iscdi=true |