High Impedance Droplet–Solid Interface Lipid Bilayer Membranes

A droplet–solid interface lipid bilayer membrane (DSLM) with high impedance was developed through controlling the contact area between an aqueous droplet and electrode. The electrode size can be easily controlled from millimeter to micrometer level. The droplet–solid interface lipid bilayer membrane...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2015-02, Vol.87 (4), p.2094-2099
Hauptverfasser: Wang, Xuejing, Ma, Shenghua, Su, Yingchun, Zhang, Ying, Bi, Hongmei, Zhang, Lixue, Han, Xiaojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2099
container_issue 4
container_start_page 2094
container_title Analytical chemistry (Washington)
container_volume 87
creator Wang, Xuejing
Ma, Shenghua
Su, Yingchun
Zhang, Ying
Bi, Hongmei
Zhang, Lixue
Han, Xiaojun
description A droplet–solid interface lipid bilayer membrane (DSLM) with high impedance was developed through controlling the contact area between an aqueous droplet and electrode. The electrode size can be easily controlled from millimeter to micrometer level. The droplet–solid interface lipid bilayer membranes were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and fluorescence microscopy. The fluorescence recovery after photobleaching (FRAP) was applied to determine the diffusion coefficient of egg PC DSLM to be 2.58 μm2 s–1. The DSLM resistance can reach up to 26.3 GΩ, which was then used to study the ion channel behavior of melittin. The resistivity of the bilayer membrane decreased linearly with the increase of melittin concentration in the membrane. The high impedance and fluidity of DSLM makes it an ideal model cell membrane system for ion channel study and high-throughput drug screening.
doi_str_mv 10.1021/ac502953v
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692386109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1656044050</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-94ee02237e72ba4c5e1d92ca28f7802a078f4ae760fd720620ec3496124b649f3</originalsourceid><addsrcrecordid>eNqN0c1Kw0AQB_BFFFurB19AAiLoITo72WySm1o_Wqh4UM9hk0w0JV_uNkJvvoNv6JO4pbWIXjwtw_7478wOY_scTjkgP1OpDxj53tsG63MfwZVhiJusDwCeiwFAj-0YMwXgHLjcZj30pS1Cv8_OR8XzizOuWspUnZJzpZu2pNnn-8dDUxaZM65npHNlbyZFa-vLolRz0s4dVYlWNZldtpWr0tDe6hywp5vrx-HIndzfjocXE1d5gZy5kSACRC-gABMlUp94FmGqMMyDEFBBEOZCUSAhzwIEiUCpJyLJUSRSRLk3YMfL3FY3rx2ZWVwVJqWytE00nYm5jNALJYfoH9SOLwT4YOnhLzptOl3bQRYqtH2gFFadLFWqG2M05XGri0rpecwhXmwgXm_A2oNVYpdUlK3l95dbcLQEKjU_XvsT9AVMs4oC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658062264</pqid></control><display><type>article</type><title>High Impedance Droplet–Solid Interface Lipid Bilayer Membranes</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Wang, Xuejing ; Ma, Shenghua ; Su, Yingchun ; Zhang, Ying ; Bi, Hongmei ; Zhang, Lixue ; Han, Xiaojun</creator><creatorcontrib>Wang, Xuejing ; Ma, Shenghua ; Su, Yingchun ; Zhang, Ying ; Bi, Hongmei ; Zhang, Lixue ; Han, Xiaojun</creatorcontrib><description>A droplet–solid interface lipid bilayer membrane (DSLM) with high impedance was developed through controlling the contact area between an aqueous droplet and electrode. The electrode size can be easily controlled from millimeter to micrometer level. The droplet–solid interface lipid bilayer membranes were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and fluorescence microscopy. The fluorescence recovery after photobleaching (FRAP) was applied to determine the diffusion coefficient of egg PC DSLM to be 2.58 μm2 s–1. The DSLM resistance can reach up to 26.3 GΩ, which was then used to study the ion channel behavior of melittin. The resistivity of the bilayer membrane decreased linearly with the increase of melittin concentration in the membrane. The high impedance and fluidity of DSLM makes it an ideal model cell membrane system for ion channel study and high-throughput drug screening.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac502953v</identifier><identifier>PMID: 25600185</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aqueous solutions ; Biochemistry ; Dielectric Spectroscopy ; Diffusion ; Droplets ; Electric Impedance ; Electrochemical impedance spectroscopy ; Electrodes ; Fluorescence ; Fluorescence Recovery After Photobleaching ; High impedance ; Ion channels ; Lipid Bilayers - chemistry ; Lipids ; Melitten - chemistry ; Membrane Fluidity ; Membranes ; Microscopy, Fluorescence ; Models, Molecular ; Phosphatidylcholines - chemistry ; Voltammetry</subject><ispartof>Analytical chemistry (Washington), 2015-02, Vol.87 (4), p.2094-2099</ispartof><rights>Copyright American Chemical Society Feb 17, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-94ee02237e72ba4c5e1d92ca28f7802a078f4ae760fd720620ec3496124b649f3</citedby><cites>FETCH-LOGICAL-a376t-94ee02237e72ba4c5e1d92ca28f7802a078f4ae760fd720620ec3496124b649f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac502953v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac502953v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25600185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xuejing</creatorcontrib><creatorcontrib>Ma, Shenghua</creatorcontrib><creatorcontrib>Su, Yingchun</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Bi, Hongmei</creatorcontrib><creatorcontrib>Zhang, Lixue</creatorcontrib><creatorcontrib>Han, Xiaojun</creatorcontrib><title>High Impedance Droplet–Solid Interface Lipid Bilayer Membranes</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A droplet–solid interface lipid bilayer membrane (DSLM) with high impedance was developed through controlling the contact area between an aqueous droplet and electrode. The electrode size can be easily controlled from millimeter to micrometer level. The droplet–solid interface lipid bilayer membranes were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and fluorescence microscopy. The fluorescence recovery after photobleaching (FRAP) was applied to determine the diffusion coefficient of egg PC DSLM to be 2.58 μm2 s–1. The DSLM resistance can reach up to 26.3 GΩ, which was then used to study the ion channel behavior of melittin. The resistivity of the bilayer membrane decreased linearly with the increase of melittin concentration in the membrane. The high impedance and fluidity of DSLM makes it an ideal model cell membrane system for ion channel study and high-throughput drug screening.</description><subject>Aqueous solutions</subject><subject>Biochemistry</subject><subject>Dielectric Spectroscopy</subject><subject>Diffusion</subject><subject>Droplets</subject><subject>Electric Impedance</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Fluorescence</subject><subject>Fluorescence Recovery After Photobleaching</subject><subject>High impedance</subject><subject>Ion channels</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Melitten - chemistry</subject><subject>Membrane Fluidity</subject><subject>Membranes</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Molecular</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Voltammetry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c1Kw0AQB_BFFFurB19AAiLoITo72WySm1o_Wqh4UM9hk0w0JV_uNkJvvoNv6JO4pbWIXjwtw_7478wOY_scTjkgP1OpDxj53tsG63MfwZVhiJusDwCeiwFAj-0YMwXgHLjcZj30pS1Cv8_OR8XzizOuWspUnZJzpZu2pNnn-8dDUxaZM65npHNlbyZFa-vLolRz0s4dVYlWNZldtpWr0tDe6hywp5vrx-HIndzfjocXE1d5gZy5kSACRC-gABMlUp94FmGqMMyDEFBBEOZCUSAhzwIEiUCpJyLJUSRSRLk3YMfL3FY3rx2ZWVwVJqWytE00nYm5jNALJYfoH9SOLwT4YOnhLzptOl3bQRYqtH2gFFadLFWqG2M05XGri0rpecwhXmwgXm_A2oNVYpdUlK3l95dbcLQEKjU_XvsT9AVMs4oC</recordid><startdate>20150217</startdate><enddate>20150217</enddate><creator>Wang, Xuejing</creator><creator>Ma, Shenghua</creator><creator>Su, Yingchun</creator><creator>Zhang, Ying</creator><creator>Bi, Hongmei</creator><creator>Zhang, Lixue</creator><creator>Han, Xiaojun</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20150217</creationdate><title>High Impedance Droplet–Solid Interface Lipid Bilayer Membranes</title><author>Wang, Xuejing ; Ma, Shenghua ; Su, Yingchun ; Zhang, Ying ; Bi, Hongmei ; Zhang, Lixue ; Han, Xiaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-94ee02237e72ba4c5e1d92ca28f7802a078f4ae760fd720620ec3496124b649f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aqueous solutions</topic><topic>Biochemistry</topic><topic>Dielectric Spectroscopy</topic><topic>Diffusion</topic><topic>Droplets</topic><topic>Electric Impedance</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Fluorescence</topic><topic>Fluorescence Recovery After Photobleaching</topic><topic>High impedance</topic><topic>Ion channels</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Melitten - chemistry</topic><topic>Membrane Fluidity</topic><topic>Membranes</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Molecular</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xuejing</creatorcontrib><creatorcontrib>Ma, Shenghua</creatorcontrib><creatorcontrib>Su, Yingchun</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Bi, Hongmei</creatorcontrib><creatorcontrib>Zhang, Lixue</creatorcontrib><creatorcontrib>Han, Xiaojun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xuejing</au><au>Ma, Shenghua</au><au>Su, Yingchun</au><au>Zhang, Ying</au><au>Bi, Hongmei</au><au>Zhang, Lixue</au><au>Han, Xiaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Impedance Droplet–Solid Interface Lipid Bilayer Membranes</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2015-02-17</date><risdate>2015</risdate><volume>87</volume><issue>4</issue><spage>2094</spage><epage>2099</epage><pages>2094-2099</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A droplet–solid interface lipid bilayer membrane (DSLM) with high impedance was developed through controlling the contact area between an aqueous droplet and electrode. The electrode size can be easily controlled from millimeter to micrometer level. The droplet–solid interface lipid bilayer membranes were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and fluorescence microscopy. The fluorescence recovery after photobleaching (FRAP) was applied to determine the diffusion coefficient of egg PC DSLM to be 2.58 μm2 s–1. The DSLM resistance can reach up to 26.3 GΩ, which was then used to study the ion channel behavior of melittin. The resistivity of the bilayer membrane decreased linearly with the increase of melittin concentration in the membrane. The high impedance and fluidity of DSLM makes it an ideal model cell membrane system for ion channel study and high-throughput drug screening.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25600185</pmid><doi>10.1021/ac502953v</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2015-02, Vol.87 (4), p.2094-2099
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1692386109
source MEDLINE; American Chemical Society Journals
subjects Aqueous solutions
Biochemistry
Dielectric Spectroscopy
Diffusion
Droplets
Electric Impedance
Electrochemical impedance spectroscopy
Electrodes
Fluorescence
Fluorescence Recovery After Photobleaching
High impedance
Ion channels
Lipid Bilayers - chemistry
Lipids
Melitten - chemistry
Membrane Fluidity
Membranes
Microscopy, Fluorescence
Models, Molecular
Phosphatidylcholines - chemistry
Voltammetry
title High Impedance Droplet–Solid Interface Lipid Bilayer Membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Impedance%20Droplet%E2%80%93Solid%20Interface%20Lipid%20Bilayer%20Membranes&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Wang,%20Xuejing&rft.date=2015-02-17&rft.volume=87&rft.issue=4&rft.spage=2094&rft.epage=2099&rft.pages=2094-2099&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac502953v&rft_dat=%3Cproquest_cross%3E1656044050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658062264&rft_id=info:pmid/25600185&rfr_iscdi=true