High Energy Density Piezoelectric Ceramics for Energy Harvesting Devices
The ceramics, (0.65 + y)Pb(Zr0.47Ti0.53)–(0.35 − y)Pb[(Ni1−xZnx)1/3Nb2/3]O3 have a morphotropic phase boundary (MPB) of pseudo‐cubic and tetragonal structures. Their ε33T/ε0 value considerably decreased on the pseudo‐cubic side of the MPB composition, but the d33 and kp slowly decreased on both side...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2011-11, Vol.94 (11), p.3629-3631 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3631 |
---|---|
container_issue | 11 |
container_start_page | 3629 |
container_title | Journal of the American Ceramic Society |
container_volume | 94 |
creator | Seo, In-Tae Cha, Yu-Joung Kang, In-Young Choi, Jae-Hong Nahm, Sahn Seung, Tae-Hyun Paik, Jong-Hoo |
description | The ceramics, (0.65 + y)Pb(Zr0.47Ti0.53)–(0.35 − y)Pb[(Ni1−xZnx)1/3Nb2/3]O3 have a morphotropic phase boundary (MPB) of pseudo‐cubic and tetragonal structures. Their ε33T/ε0 value considerably decreased on the pseudo‐cubic side of the MPB composition, but the d33 and kp slowly decreased on both sides of the MPB. Therefore, the maximum transduction coefficient (d33 * g33) was obtained from the composition on the pseudo‐cubic side of the MPB, because g33 is given by d33/ε33T. This result could be applied to other systems containing an MPB of pseudo‐cubic and tetragonal structures. Furthermore, a d33 * g33 value of 20 056 × 10−15 m2/N, which is the highest value reported so far for polycrystalline ceramics, was obtained from the 0.68Pb(Zr0.47Ti0.53)O3–0.32Pb(Ni0.6Zn0.4)1/3Nb2/3O3 ceramic. |
doi_str_mv | 10.1111/j.1551-2916.2011.04817.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692385158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1010927481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5777-c57ba87e5c0ef973f5815e1055d7a90d93512f3ad7b8914e10673b2d21c32c263</originalsourceid><addsrcrecordid>eNqNkUFvEzEQha0KJELhP6x64rJbj72O7QtStU27LVUhUhFHy3Fmg8Nmt9hJm_TX10toD1yID_ZY872n0TxCMqAFpHO6LEAIyJmGccEoQEFLBbLYHpHRa-MNGVFKWS4Vo-_I-xiX6QtalSNS137xM5t0GBa77By76Ne77JvHpx5bdOvgXVZhsCvvYtb04YWsbXjAuPbdIokevMP4gbxtbBvx49_3mHy_mNxVdX7z9fKqOrvJnZBSDvfMKonCUWy05I1QIBCoEHNpNZ1rLoA13M7lTGkoU2cs-YzNGTjOHBvzY_Jp73sf-t-bNINZ-eiwbW2H_SYaGGvGlQChDkBLxphWUv4fpUA1k2m1B6GDpRxmPfkHXfab0KX1GE1LrjiHMkFqD7nQxxiwMffBr2zYJSczRGyWZkjSDEmaIWLzJ2KzTdLPe-mjb3F3sM5cn1WToUwG-d7AxzVuXw1s-GXS2qUwP24vDZ3W1fl0eme-8GfD1bhr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>904383314</pqid></control><display><type>article</type><title>High Energy Density Piezoelectric Ceramics for Energy Harvesting Devices</title><source>Access via Wiley Online Library</source><creator>Seo, In-Tae ; Cha, Yu-Joung ; Kang, In-Young ; Choi, Jae-Hong ; Nahm, Sahn ; Seung, Tae-Hyun ; Paik, Jong-Hoo</creator><contributor>Priya, S. ; Priya, S.</contributor><creatorcontrib>Seo, In-Tae ; Cha, Yu-Joung ; Kang, In-Young ; Choi, Jae-Hong ; Nahm, Sahn ; Seung, Tae-Hyun ; Paik, Jong-Hoo ; Priya, S. ; Priya, S.</creatorcontrib><description>The ceramics, (0.65 + y)Pb(Zr0.47Ti0.53)–(0.35 − y)Pb[(Ni1−xZnx)1/3Nb2/3]O3 have a morphotropic phase boundary (MPB) of pseudo‐cubic and tetragonal structures. Their ε33T/ε0 value considerably decreased on the pseudo‐cubic side of the MPB composition, but the d33 and kp slowly decreased on both sides of the MPB. Therefore, the maximum transduction coefficient (d33 * g33) was obtained from the composition on the pseudo‐cubic side of the MPB, because g33 is given by d33/ε33T. This result could be applied to other systems containing an MPB of pseudo‐cubic and tetragonal structures. Furthermore, a d33 * g33 value of 20 056 × 10−15 m2/N, which is the highest value reported so far for polycrystalline ceramics, was obtained from the 0.68Pb(Zr0.47Ti0.53)O3–0.32Pb(Ni0.6Zn0.4)1/3Nb2/3O3 ceramic.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1551-2916.2011.04817.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Columbus: Blackwell Publishing Ltd</publisher><subject>Ceramics ; Coefficients ; Crystal structure ; Crystallography ; Devices ; Dielectric constant ; Electric properties ; Energy density ; Energy harvesting ; Harvesting ; Joining ; Permittivity ; Phase boundaries ; Piezoelectric ceramics ; Piezoelectricity ; Polycrystals</subject><ispartof>Journal of the American Ceramic Society, 2011-11, Vol.94 (11), p.3629-3631</ispartof><rights>2011 The American Ceramic Society</rights><rights>Copyright American Ceramic Society Nov 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5777-c57ba87e5c0ef973f5815e1055d7a90d93512f3ad7b8914e10673b2d21c32c263</citedby><cites>FETCH-LOGICAL-c5777-c57ba87e5c0ef973f5815e1055d7a90d93512f3ad7b8914e10673b2d21c32c263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1551-2916.2011.04817.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1551-2916.2011.04817.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><contributor>Priya, S.</contributor><contributor>Priya, S.</contributor><creatorcontrib>Seo, In-Tae</creatorcontrib><creatorcontrib>Cha, Yu-Joung</creatorcontrib><creatorcontrib>Kang, In-Young</creatorcontrib><creatorcontrib>Choi, Jae-Hong</creatorcontrib><creatorcontrib>Nahm, Sahn</creatorcontrib><creatorcontrib>Seung, Tae-Hyun</creatorcontrib><creatorcontrib>Paik, Jong-Hoo</creatorcontrib><title>High Energy Density Piezoelectric Ceramics for Energy Harvesting Devices</title><title>Journal of the American Ceramic Society</title><addtitle>J. Am. Ceram. Soc</addtitle><description>The ceramics, (0.65 + y)Pb(Zr0.47Ti0.53)–(0.35 − y)Pb[(Ni1−xZnx)1/3Nb2/3]O3 have a morphotropic phase boundary (MPB) of pseudo‐cubic and tetragonal structures. Their ε33T/ε0 value considerably decreased on the pseudo‐cubic side of the MPB composition, but the d33 and kp slowly decreased on both sides of the MPB. Therefore, the maximum transduction coefficient (d33 * g33) was obtained from the composition on the pseudo‐cubic side of the MPB, because g33 is given by d33/ε33T. This result could be applied to other systems containing an MPB of pseudo‐cubic and tetragonal structures. Furthermore, a d33 * g33 value of 20 056 × 10−15 m2/N, which is the highest value reported so far for polycrystalline ceramics, was obtained from the 0.68Pb(Zr0.47Ti0.53)O3–0.32Pb(Ni0.6Zn0.4)1/3Nb2/3O3 ceramic.</description><subject>Ceramics</subject><subject>Coefficients</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Devices</subject><subject>Dielectric constant</subject><subject>Electric properties</subject><subject>Energy density</subject><subject>Energy harvesting</subject><subject>Harvesting</subject><subject>Joining</subject><subject>Permittivity</subject><subject>Phase boundaries</subject><subject>Piezoelectric ceramics</subject><subject>Piezoelectricity</subject><subject>Polycrystals</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkUFvEzEQha0KJELhP6x64rJbj72O7QtStU27LVUhUhFHy3Fmg8Nmt9hJm_TX10toD1yID_ZY872n0TxCMqAFpHO6LEAIyJmGccEoQEFLBbLYHpHRa-MNGVFKWS4Vo-_I-xiX6QtalSNS137xM5t0GBa77By76Ne77JvHpx5bdOvgXVZhsCvvYtb04YWsbXjAuPbdIokevMP4gbxtbBvx49_3mHy_mNxVdX7z9fKqOrvJnZBSDvfMKonCUWy05I1QIBCoEHNpNZ1rLoA13M7lTGkoU2cs-YzNGTjOHBvzY_Jp73sf-t-bNINZ-eiwbW2H_SYaGGvGlQChDkBLxphWUv4fpUA1k2m1B6GDpRxmPfkHXfab0KX1GE1LrjiHMkFqD7nQxxiwMffBr2zYJSczRGyWZkjSDEmaIWLzJ2KzTdLPe-mjb3F3sM5cn1WToUwG-d7AxzVuXw1s-GXS2qUwP24vDZ3W1fl0eme-8GfD1bhr</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Seo, In-Tae</creator><creator>Cha, Yu-Joung</creator><creator>Kang, In-Young</creator><creator>Choi, Jae-Hong</creator><creator>Nahm, Sahn</creator><creator>Seung, Tae-Hyun</creator><creator>Paik, Jong-Hoo</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201111</creationdate><title>High Energy Density Piezoelectric Ceramics for Energy Harvesting Devices</title><author>Seo, In-Tae ; Cha, Yu-Joung ; Kang, In-Young ; Choi, Jae-Hong ; Nahm, Sahn ; Seung, Tae-Hyun ; Paik, Jong-Hoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5777-c57ba87e5c0ef973f5815e1055d7a90d93512f3ad7b8914e10673b2d21c32c263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Ceramics</topic><topic>Coefficients</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Devices</topic><topic>Dielectric constant</topic><topic>Electric properties</topic><topic>Energy density</topic><topic>Energy harvesting</topic><topic>Harvesting</topic><topic>Joining</topic><topic>Permittivity</topic><topic>Phase boundaries</topic><topic>Piezoelectric ceramics</topic><topic>Piezoelectricity</topic><topic>Polycrystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, In-Tae</creatorcontrib><creatorcontrib>Cha, Yu-Joung</creatorcontrib><creatorcontrib>Kang, In-Young</creatorcontrib><creatorcontrib>Choi, Jae-Hong</creatorcontrib><creatorcontrib>Nahm, Sahn</creatorcontrib><creatorcontrib>Seung, Tae-Hyun</creatorcontrib><creatorcontrib>Paik, Jong-Hoo</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, In-Tae</au><au>Cha, Yu-Joung</au><au>Kang, In-Young</au><au>Choi, Jae-Hong</au><au>Nahm, Sahn</au><au>Seung, Tae-Hyun</au><au>Paik, Jong-Hoo</au><au>Priya, S.</au><au>Priya, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Energy Density Piezoelectric Ceramics for Energy Harvesting Devices</atitle><jtitle>Journal of the American Ceramic Society</jtitle><addtitle>J. Am. Ceram. Soc</addtitle><date>2011-11</date><risdate>2011</risdate><volume>94</volume><issue>11</issue><spage>3629</spage><epage>3631</epage><pages>3629-3631</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>The ceramics, (0.65 + y)Pb(Zr0.47Ti0.53)–(0.35 − y)Pb[(Ni1−xZnx)1/3Nb2/3]O3 have a morphotropic phase boundary (MPB) of pseudo‐cubic and tetragonal structures. Their ε33T/ε0 value considerably decreased on the pseudo‐cubic side of the MPB composition, but the d33 and kp slowly decreased on both sides of the MPB. Therefore, the maximum transduction coefficient (d33 * g33) was obtained from the composition on the pseudo‐cubic side of the MPB, because g33 is given by d33/ε33T. This result could be applied to other systems containing an MPB of pseudo‐cubic and tetragonal structures. Furthermore, a d33 * g33 value of 20 056 × 10−15 m2/N, which is the highest value reported so far for polycrystalline ceramics, was obtained from the 0.68Pb(Zr0.47Ti0.53)O3–0.32Pb(Ni0.6Zn0.4)1/3Nb2/3O3 ceramic.</abstract><cop>Columbus</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1551-2916.2011.04817.x</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2011-11, Vol.94 (11), p.3629-3631 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692385158 |
source | Access via Wiley Online Library |
subjects | Ceramics Coefficients Crystal structure Crystallography Devices Dielectric constant Electric properties Energy density Energy harvesting Harvesting Joining Permittivity Phase boundaries Piezoelectric ceramics Piezoelectricity Polycrystals |
title | High Energy Density Piezoelectric Ceramics for Energy Harvesting Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A51%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Energy%20Density%20Piezoelectric%20Ceramics%20for%20Energy%20Harvesting%20Devices&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Seo,%20In-Tae&rft.date=2011-11&rft.volume=94&rft.issue=11&rft.spage=3629&rft.epage=3631&rft.pages=3629-3631&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1551-2916.2011.04817.x&rft_dat=%3Cproquest_cross%3E1010927481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=904383314&rft_id=info:pmid/&rfr_iscdi=true |