High Energy Density Piezoelectric Ceramics for Energy Harvesting Devices

The ceramics, (0.65 + y)Pb(Zr0.47Ti0.53)–(0.35 − y)Pb[(Ni1−xZnx)1/3Nb2/3]O3 have a morphotropic phase boundary (MPB) of pseudo‐cubic and tetragonal structures. Their ε33T/ε0 value considerably decreased on the pseudo‐cubic side of the MPB composition, but the d33 and kp slowly decreased on both side...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2011-11, Vol.94 (11), p.3629-3631
Hauptverfasser: Seo, In-Tae, Cha, Yu-Joung, Kang, In-Young, Choi, Jae-Hong, Nahm, Sahn, Seung, Tae-Hyun, Paik, Jong-Hoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3631
container_issue 11
container_start_page 3629
container_title Journal of the American Ceramic Society
container_volume 94
creator Seo, In-Tae
Cha, Yu-Joung
Kang, In-Young
Choi, Jae-Hong
Nahm, Sahn
Seung, Tae-Hyun
Paik, Jong-Hoo
description The ceramics, (0.65 + y)Pb(Zr0.47Ti0.53)–(0.35 − y)Pb[(Ni1−xZnx)1/3Nb2/3]O3 have a morphotropic phase boundary (MPB) of pseudo‐cubic and tetragonal structures. Their ε33T/ε0 value considerably decreased on the pseudo‐cubic side of the MPB composition, but the d33 and kp slowly decreased on both sides of the MPB. Therefore, the maximum transduction coefficient (d33 * g33) was obtained from the composition on the pseudo‐cubic side of the MPB, because g33 is given by d33/ε33T. This result could be applied to other systems containing an MPB of pseudo‐cubic and tetragonal structures. Furthermore, a d33 * g33 value of 20 056 × 10−15 m2/N, which is the highest value reported so far for polycrystalline ceramics, was obtained from the 0.68Pb(Zr0.47Ti0.53)O3–0.32Pb(Ni0.6Zn0.4)1/3Nb2/3O3 ceramic.
doi_str_mv 10.1111/j.1551-2916.2011.04817.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692385158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1010927481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5777-c57ba87e5c0ef973f5815e1055d7a90d93512f3ad7b8914e10673b2d21c32c263</originalsourceid><addsrcrecordid>eNqNkUFvEzEQha0KJELhP6x64rJbj72O7QtStU27LVUhUhFHy3Fmg8Nmt9hJm_TX10toD1yID_ZY872n0TxCMqAFpHO6LEAIyJmGccEoQEFLBbLYHpHRa-MNGVFKWS4Vo-_I-xiX6QtalSNS137xM5t0GBa77By76Ne77JvHpx5bdOvgXVZhsCvvYtb04YWsbXjAuPbdIokevMP4gbxtbBvx49_3mHy_mNxVdX7z9fKqOrvJnZBSDvfMKonCUWy05I1QIBCoEHNpNZ1rLoA13M7lTGkoU2cs-YzNGTjOHBvzY_Jp73sf-t-bNINZ-eiwbW2H_SYaGGvGlQChDkBLxphWUv4fpUA1k2m1B6GDpRxmPfkHXfab0KX1GE1LrjiHMkFqD7nQxxiwMffBr2zYJSczRGyWZkjSDEmaIWLzJ2KzTdLPe-mjb3F3sM5cn1WToUwG-d7AxzVuXw1s-GXS2qUwP24vDZ3W1fl0eme-8GfD1bhr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>904383314</pqid></control><display><type>article</type><title>High Energy Density Piezoelectric Ceramics for Energy Harvesting Devices</title><source>Access via Wiley Online Library</source><creator>Seo, In-Tae ; Cha, Yu-Joung ; Kang, In-Young ; Choi, Jae-Hong ; Nahm, Sahn ; Seung, Tae-Hyun ; Paik, Jong-Hoo</creator><contributor>Priya, S. ; Priya, S.</contributor><creatorcontrib>Seo, In-Tae ; Cha, Yu-Joung ; Kang, In-Young ; Choi, Jae-Hong ; Nahm, Sahn ; Seung, Tae-Hyun ; Paik, Jong-Hoo ; Priya, S. ; Priya, S.</creatorcontrib><description>The ceramics, (0.65 + y)Pb(Zr0.47Ti0.53)–(0.35 − y)Pb[(Ni1−xZnx)1/3Nb2/3]O3 have a morphotropic phase boundary (MPB) of pseudo‐cubic and tetragonal structures. Their ε33T/ε0 value considerably decreased on the pseudo‐cubic side of the MPB composition, but the d33 and kp slowly decreased on both sides of the MPB. Therefore, the maximum transduction coefficient (d33 * g33) was obtained from the composition on the pseudo‐cubic side of the MPB, because g33 is given by d33/ε33T. This result could be applied to other systems containing an MPB of pseudo‐cubic and tetragonal structures. Furthermore, a d33 * g33 value of 20 056 × 10−15 m2/N, which is the highest value reported so far for polycrystalline ceramics, was obtained from the 0.68Pb(Zr0.47Ti0.53)O3–0.32Pb(Ni0.6Zn0.4)1/3Nb2/3O3 ceramic.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1551-2916.2011.04817.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Columbus: Blackwell Publishing Ltd</publisher><subject>Ceramics ; Coefficients ; Crystal structure ; Crystallography ; Devices ; Dielectric constant ; Electric properties ; Energy density ; Energy harvesting ; Harvesting ; Joining ; Permittivity ; Phase boundaries ; Piezoelectric ceramics ; Piezoelectricity ; Polycrystals</subject><ispartof>Journal of the American Ceramic Society, 2011-11, Vol.94 (11), p.3629-3631</ispartof><rights>2011 The American Ceramic Society</rights><rights>Copyright American Ceramic Society Nov 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5777-c57ba87e5c0ef973f5815e1055d7a90d93512f3ad7b8914e10673b2d21c32c263</citedby><cites>FETCH-LOGICAL-c5777-c57ba87e5c0ef973f5815e1055d7a90d93512f3ad7b8914e10673b2d21c32c263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1551-2916.2011.04817.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1551-2916.2011.04817.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><contributor>Priya, S.</contributor><contributor>Priya, S.</contributor><creatorcontrib>Seo, In-Tae</creatorcontrib><creatorcontrib>Cha, Yu-Joung</creatorcontrib><creatorcontrib>Kang, In-Young</creatorcontrib><creatorcontrib>Choi, Jae-Hong</creatorcontrib><creatorcontrib>Nahm, Sahn</creatorcontrib><creatorcontrib>Seung, Tae-Hyun</creatorcontrib><creatorcontrib>Paik, Jong-Hoo</creatorcontrib><title>High Energy Density Piezoelectric Ceramics for Energy Harvesting Devices</title><title>Journal of the American Ceramic Society</title><addtitle>J. Am. Ceram. Soc</addtitle><description>The ceramics, (0.65 + y)Pb(Zr0.47Ti0.53)–(0.35 − y)Pb[(Ni1−xZnx)1/3Nb2/3]O3 have a morphotropic phase boundary (MPB) of pseudo‐cubic and tetragonal structures. Their ε33T/ε0 value considerably decreased on the pseudo‐cubic side of the MPB composition, but the d33 and kp slowly decreased on both sides of the MPB. Therefore, the maximum transduction coefficient (d33 * g33) was obtained from the composition on the pseudo‐cubic side of the MPB, because g33 is given by d33/ε33T. This result could be applied to other systems containing an MPB of pseudo‐cubic and tetragonal structures. Furthermore, a d33 * g33 value of 20 056 × 10−15 m2/N, which is the highest value reported so far for polycrystalline ceramics, was obtained from the 0.68Pb(Zr0.47Ti0.53)O3–0.32Pb(Ni0.6Zn0.4)1/3Nb2/3O3 ceramic.</description><subject>Ceramics</subject><subject>Coefficients</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Devices</subject><subject>Dielectric constant</subject><subject>Electric properties</subject><subject>Energy density</subject><subject>Energy harvesting</subject><subject>Harvesting</subject><subject>Joining</subject><subject>Permittivity</subject><subject>Phase boundaries</subject><subject>Piezoelectric ceramics</subject><subject>Piezoelectricity</subject><subject>Polycrystals</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkUFvEzEQha0KJELhP6x64rJbj72O7QtStU27LVUhUhFHy3Fmg8Nmt9hJm_TX10toD1yID_ZY872n0TxCMqAFpHO6LEAIyJmGccEoQEFLBbLYHpHRa-MNGVFKWS4Vo-_I-xiX6QtalSNS137xM5t0GBa77By76Ne77JvHpx5bdOvgXVZhsCvvYtb04YWsbXjAuPbdIokevMP4gbxtbBvx49_3mHy_mNxVdX7z9fKqOrvJnZBSDvfMKonCUWy05I1QIBCoEHNpNZ1rLoA13M7lTGkoU2cs-YzNGTjOHBvzY_Jp73sf-t-bNINZ-eiwbW2H_SYaGGvGlQChDkBLxphWUv4fpUA1k2m1B6GDpRxmPfkHXfab0KX1GE1LrjiHMkFqD7nQxxiwMffBr2zYJSczRGyWZkjSDEmaIWLzJ2KzTdLPe-mjb3F3sM5cn1WToUwG-d7AxzVuXw1s-GXS2qUwP24vDZ3W1fl0eme-8GfD1bhr</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Seo, In-Tae</creator><creator>Cha, Yu-Joung</creator><creator>Kang, In-Young</creator><creator>Choi, Jae-Hong</creator><creator>Nahm, Sahn</creator><creator>Seung, Tae-Hyun</creator><creator>Paik, Jong-Hoo</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201111</creationdate><title>High Energy Density Piezoelectric Ceramics for Energy Harvesting Devices</title><author>Seo, In-Tae ; Cha, Yu-Joung ; Kang, In-Young ; Choi, Jae-Hong ; Nahm, Sahn ; Seung, Tae-Hyun ; Paik, Jong-Hoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5777-c57ba87e5c0ef973f5815e1055d7a90d93512f3ad7b8914e10673b2d21c32c263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Ceramics</topic><topic>Coefficients</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Devices</topic><topic>Dielectric constant</topic><topic>Electric properties</topic><topic>Energy density</topic><topic>Energy harvesting</topic><topic>Harvesting</topic><topic>Joining</topic><topic>Permittivity</topic><topic>Phase boundaries</topic><topic>Piezoelectric ceramics</topic><topic>Piezoelectricity</topic><topic>Polycrystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, In-Tae</creatorcontrib><creatorcontrib>Cha, Yu-Joung</creatorcontrib><creatorcontrib>Kang, In-Young</creatorcontrib><creatorcontrib>Choi, Jae-Hong</creatorcontrib><creatorcontrib>Nahm, Sahn</creatorcontrib><creatorcontrib>Seung, Tae-Hyun</creatorcontrib><creatorcontrib>Paik, Jong-Hoo</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, In-Tae</au><au>Cha, Yu-Joung</au><au>Kang, In-Young</au><au>Choi, Jae-Hong</au><au>Nahm, Sahn</au><au>Seung, Tae-Hyun</au><au>Paik, Jong-Hoo</au><au>Priya, S.</au><au>Priya, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Energy Density Piezoelectric Ceramics for Energy Harvesting Devices</atitle><jtitle>Journal of the American Ceramic Society</jtitle><addtitle>J. Am. Ceram. Soc</addtitle><date>2011-11</date><risdate>2011</risdate><volume>94</volume><issue>11</issue><spage>3629</spage><epage>3631</epage><pages>3629-3631</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>The ceramics, (0.65 + y)Pb(Zr0.47Ti0.53)–(0.35 − y)Pb[(Ni1−xZnx)1/3Nb2/3]O3 have a morphotropic phase boundary (MPB) of pseudo‐cubic and tetragonal structures. Their ε33T/ε0 value considerably decreased on the pseudo‐cubic side of the MPB composition, but the d33 and kp slowly decreased on both sides of the MPB. Therefore, the maximum transduction coefficient (d33 * g33) was obtained from the composition on the pseudo‐cubic side of the MPB, because g33 is given by d33/ε33T. This result could be applied to other systems containing an MPB of pseudo‐cubic and tetragonal structures. Furthermore, a d33 * g33 value of 20 056 × 10−15 m2/N, which is the highest value reported so far for polycrystalline ceramics, was obtained from the 0.68Pb(Zr0.47Ti0.53)O3–0.32Pb(Ni0.6Zn0.4)1/3Nb2/3O3 ceramic.</abstract><cop>Columbus</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1551-2916.2011.04817.x</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2011-11, Vol.94 (11), p.3629-3631
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_miscellaneous_1692385158
source Access via Wiley Online Library
subjects Ceramics
Coefficients
Crystal structure
Crystallography
Devices
Dielectric constant
Electric properties
Energy density
Energy harvesting
Harvesting
Joining
Permittivity
Phase boundaries
Piezoelectric ceramics
Piezoelectricity
Polycrystals
title High Energy Density Piezoelectric Ceramics for Energy Harvesting Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A51%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Energy%20Density%20Piezoelectric%20Ceramics%20for%20Energy%20Harvesting%20Devices&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Seo,%20In-Tae&rft.date=2011-11&rft.volume=94&rft.issue=11&rft.spage=3629&rft.epage=3631&rft.pages=3629-3631&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1551-2916.2011.04817.x&rft_dat=%3Cproquest_cross%3E1010927481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=904383314&rft_id=info:pmid/&rfr_iscdi=true