A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary
•A 3D finite element model of the railway catenary using ANCF is defined.•The method considers the constraints imposed during stringing of the catenary.•Two methods proposed: pointwise height constraint and distributed optimization.•The methods were applied to real catenaries with straight and curve...
Gespeichert in:
Veröffentlicht in: | Engineering structures 2014-07, Vol.71, p.234-243 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 243 |
---|---|
container_issue | |
container_start_page | 234 |
container_title | Engineering structures |
container_volume | 71 |
creator | Tur, M. García, E. Baeza, L. Fuenmayor, F.J. |
description | •A 3D finite element model of the railway catenary using ANCF is defined.•The method considers the constraints imposed during stringing of the catenary.•Two methods proposed: pointwise height constraint and distributed optimization.•The methods were applied to real catenaries with straight and curved paths.
In this paper we propose a method of finding the initial equilibrium configuration of cable structures discretized by finite elements applied to the shape-finding of the railway overhead system. Absolute nodal coordinate formulation finite elements, which allow for axial and bending deformation, are used for the contact and messenger wires. The other parts of the overhead system are discretized with non-linear bars or equivalent springs. The proposed method considers the constraints introduced during the assembly of the catenary, such as the position of droppers, cable tension, and height of the contact wire. The formulation is general and can be applied to different catenary configurations or transitions both in 2D and 3D with straight or curved track paths. A comparison of the results obtained for reference catenaries in the bibliography is also included. |
doi_str_mv | 10.1016/j.engstruct.2014.04.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692384255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029614002284</els_id><sourcerecordid>1692384255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-2eedf268d2a8d952cdd50b3d34530beafa315f2a18403f1f8033779ef646300a3</originalsourceid><addsrcrecordid>eNqFkVFrHCEUhYfSQrdpf0N9CfRltlcdHfdxSdukEMhL-iyuXhOXGd2q05J_X6cb8hq5cOH63XPQ03WfKWwpUPn1uMX4UGpebN0yoMMWWlHxpttQNfJ-5Iy_7TbtgvbAdvJ996GUIwAwpWDTxT3h34g5lDQtFUlMzkzEppRdiKYNfIihNZxwxljJnBxOpKaGzKd1oT4iWZHwfy368LBkU0OKJHliSDZh-mueiG1a0eSnj907b6aCn577Rffrx_f7q5v-9u7659X-treDhNozROeZVI4Z5XaCWecEHLjjg-BwQOMNp8IzQ9UA3FOvgPNx3KGXg-QAhl90X866p5x-L1iqnkOxOE0mYlqKpnLHuBqYEK-jQlAKg5KyoeMZtTmVktHrUw5ze5amoNcw9FG_hKHXMDS0oqvJ5bOJKdZMPptoQ3lZZ0qwdobG7c8cts_5EzDrYgNGiy5kbJouhVe9_gGHk6UT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551104866</pqid></control><display><type>article</type><title>A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary</title><source>Elsevier ScienceDirect Journals</source><creator>Tur, M. ; García, E. ; Baeza, L. ; Fuenmayor, F.J.</creator><creatorcontrib>Tur, M. ; García, E. ; Baeza, L. ; Fuenmayor, F.J.</creatorcontrib><description>•A 3D finite element model of the railway catenary using ANCF is defined.•The method considers the constraints imposed during stringing of the catenary.•Two methods proposed: pointwise height constraint and distributed optimization.•The methods were applied to real catenaries with straight and curved paths.
In this paper we propose a method of finding the initial equilibrium configuration of cable structures discretized by finite elements applied to the shape-finding of the railway overhead system. Absolute nodal coordinate formulation finite elements, which allow for axial and bending deformation, are used for the contact and messenger wires. The other parts of the overhead system are discretized with non-linear bars or equivalent springs. The proposed method considers the constraints introduced during the assembly of the catenary, such as the position of droppers, cable tension, and height of the contact wire. The formulation is general and can be applied to different catenary configurations or transitions both in 2D and 3D with straight or curved track paths. A comparison of the results obtained for reference catenaries in the bibliography is also included.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2014.04.015</identifier><identifier>CODEN: ENSTDF</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Absolute nodal coordinate ; Applied sciences ; Buildings. Public works ; Catenaries ; Catenary ; Computation methods. Tables. Charts ; Contact ; Exact sciences and technology ; Finite element method ; Mathematical analysis ; Mathematical models ; Overhead system ; Railroads ; Railway engineering ; Railway tracks (foundations and track subgrades) ; Shape-finding ; Structural analysis. Stresses ; Three dimensional ; Transportation infrastructure</subject><ispartof>Engineering structures, 2014-07, Vol.71, p.234-243</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-2eedf268d2a8d952cdd50b3d34530beafa315f2a18403f1f8033779ef646300a3</citedby><cites>FETCH-LOGICAL-c460t-2eedf268d2a8d952cdd50b3d34530beafa315f2a18403f1f8033779ef646300a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141029614002284$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28522224$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tur, M.</creatorcontrib><creatorcontrib>García, E.</creatorcontrib><creatorcontrib>Baeza, L.</creatorcontrib><creatorcontrib>Fuenmayor, F.J.</creatorcontrib><title>A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary</title><title>Engineering structures</title><description>•A 3D finite element model of the railway catenary using ANCF is defined.•The method considers the constraints imposed during stringing of the catenary.•Two methods proposed: pointwise height constraint and distributed optimization.•The methods were applied to real catenaries with straight and curved paths.
In this paper we propose a method of finding the initial equilibrium configuration of cable structures discretized by finite elements applied to the shape-finding of the railway overhead system. Absolute nodal coordinate formulation finite elements, which allow for axial and bending deformation, are used for the contact and messenger wires. The other parts of the overhead system are discretized with non-linear bars or equivalent springs. The proposed method considers the constraints introduced during the assembly of the catenary, such as the position of droppers, cable tension, and height of the contact wire. The formulation is general and can be applied to different catenary configurations or transitions both in 2D and 3D with straight or curved track paths. A comparison of the results obtained for reference catenaries in the bibliography is also included.</description><subject>Absolute nodal coordinate</subject><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Catenaries</subject><subject>Catenary</subject><subject>Computation methods. Tables. Charts</subject><subject>Contact</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Overhead system</subject><subject>Railroads</subject><subject>Railway engineering</subject><subject>Railway tracks (foundations and track subgrades)</subject><subject>Shape-finding</subject><subject>Structural analysis. Stresses</subject><subject>Three dimensional</subject><subject>Transportation infrastructure</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkVFrHCEUhYfSQrdpf0N9CfRltlcdHfdxSdukEMhL-iyuXhOXGd2q05J_X6cb8hq5cOH63XPQ03WfKWwpUPn1uMX4UGpebN0yoMMWWlHxpttQNfJ-5Iy_7TbtgvbAdvJ996GUIwAwpWDTxT3h34g5lDQtFUlMzkzEppRdiKYNfIihNZxwxljJnBxOpKaGzKd1oT4iWZHwfy368LBkU0OKJHliSDZh-mueiG1a0eSnj907b6aCn577Rffrx_f7q5v-9u7659X-treDhNozROeZVI4Z5XaCWecEHLjjg-BwQOMNp8IzQ9UA3FOvgPNx3KGXg-QAhl90X866p5x-L1iqnkOxOE0mYlqKpnLHuBqYEK-jQlAKg5KyoeMZtTmVktHrUw5ze5amoNcw9FG_hKHXMDS0oqvJ5bOJKdZMPptoQ3lZZ0qwdobG7c8cts_5EzDrYgNGiy5kbJouhVe9_gGHk6UT</recordid><startdate>20140715</startdate><enddate>20140715</enddate><creator>Tur, M.</creator><creator>García, E.</creator><creator>Baeza, L.</creator><creator>Fuenmayor, F.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20140715</creationdate><title>A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary</title><author>Tur, M. ; García, E. ; Baeza, L. ; Fuenmayor, F.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-2eedf268d2a8d952cdd50b3d34530beafa315f2a18403f1f8033779ef646300a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Absolute nodal coordinate</topic><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Catenaries</topic><topic>Catenary</topic><topic>Computation methods. Tables. Charts</topic><topic>Contact</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Overhead system</topic><topic>Railroads</topic><topic>Railway engineering</topic><topic>Railway tracks (foundations and track subgrades)</topic><topic>Shape-finding</topic><topic>Structural analysis. Stresses</topic><topic>Three dimensional</topic><topic>Transportation infrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tur, M.</creatorcontrib><creatorcontrib>García, E.</creatorcontrib><creatorcontrib>Baeza, L.</creatorcontrib><creatorcontrib>Fuenmayor, F.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tur, M.</au><au>García, E.</au><au>Baeza, L.</au><au>Fuenmayor, F.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary</atitle><jtitle>Engineering structures</jtitle><date>2014-07-15</date><risdate>2014</risdate><volume>71</volume><spage>234</spage><epage>243</epage><pages>234-243</pages><issn>0141-0296</issn><eissn>1873-7323</eissn><coden>ENSTDF</coden><abstract>•A 3D finite element model of the railway catenary using ANCF is defined.•The method considers the constraints imposed during stringing of the catenary.•Two methods proposed: pointwise height constraint and distributed optimization.•The methods were applied to real catenaries with straight and curved paths.
In this paper we propose a method of finding the initial equilibrium configuration of cable structures discretized by finite elements applied to the shape-finding of the railway overhead system. Absolute nodal coordinate formulation finite elements, which allow for axial and bending deformation, are used for the contact and messenger wires. The other parts of the overhead system are discretized with non-linear bars or equivalent springs. The proposed method considers the constraints introduced during the assembly of the catenary, such as the position of droppers, cable tension, and height of the contact wire. The formulation is general and can be applied to different catenary configurations or transitions both in 2D and 3D with straight or curved track paths. A comparison of the results obtained for reference catenaries in the bibliography is also included.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2014.04.015</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-0296 |
ispartof | Engineering structures, 2014-07, Vol.71, p.234-243 |
issn | 0141-0296 1873-7323 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692384255 |
source | Elsevier ScienceDirect Journals |
subjects | Absolute nodal coordinate Applied sciences Buildings. Public works Catenaries Catenary Computation methods. Tables. Charts Contact Exact sciences and technology Finite element method Mathematical analysis Mathematical models Overhead system Railroads Railway engineering Railway tracks (foundations and track subgrades) Shape-finding Structural analysis. Stresses Three dimensional Transportation infrastructure |
title | A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%203D%20absolute%20nodal%20coordinate%20finite%20element%20model%20to%20compute%20the%20initial%20configuration%20of%20a%20railway%20catenary&rft.jtitle=Engineering%20structures&rft.au=Tur,%20M.&rft.date=2014-07-15&rft.volume=71&rft.spage=234&rft.epage=243&rft.pages=234-243&rft.issn=0141-0296&rft.eissn=1873-7323&rft.coden=ENSTDF&rft_id=info:doi/10.1016/j.engstruct.2014.04.015&rft_dat=%3Cproquest_cross%3E1692384255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551104866&rft_id=info:pmid/&rft_els_id=S0141029614002284&rfr_iscdi=true |