Real-Time Metabolic Analysis of Living Cancer Cells with Correlated Cellular Spectro-microscopy

In recent years, major efforts have been devoted to the application of microscopy with mid-infrared light to the study of living cells and tissue. Despite this interest, infrared (IR) microscopy has not realized its full potential in the molecular characterization of living systems. This is partly d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2014-07, Vol.86 (14), p.6887-6895
Hauptverfasser: Quaroni, Luca, Zlateva, Theodora
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6895
container_issue 14
container_start_page 6887
container_title Analytical chemistry (Washington)
container_volume 86
creator Quaroni, Luca
Zlateva, Theodora
description In recent years, major efforts have been devoted to the application of microscopy with mid-infrared light to the study of living cells and tissue. Despite this interest, infrared (IR) microscopy has not realized its full potential in the molecular characterization of living systems. This is partly due to the fact that current approaches for data mining and analysis of IR absorption spectra have not evolved comparably to measurement technology and are not up to the interpretation of the complex spectra of living systems such as cells and tissue. In this work we show that the use of two-dimensional correlation spectroscopy coupled to IR absorption spectro-microscopy allows us to extract the spectral components of individual metabolites from time-resolved IR spectra of living cells. We call this method correlated cellular spectro-microscopy, and we implement it in the study of the glycolytic metabolism of cancer cells. We show that the method can detect intermediates of the glycolytic pathway, quantify their rate of formation, and correlate this with variations in pH, all in a single measurement. We propose the method as a useful tool for the quantitative description of metabolic processes in living cells and for the validation of drug candidates aimed at suppressing glycolysis in cancer cells.
doi_str_mv 10.1021/ac501561x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692380795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692380795</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-5a82be16d35fa8de60f62dc0f7799a7567bfdaa99a3d71616b2400284392827b3</originalsourceid><addsrcrecordid>eNqF0V2L1DAUBuAgLu44euEfkIAIelE9J2k-erkUv2AWQdfrcpqmmqWdjEm7Ov9-OzvrsuiFVwnh4c1JXsaeIbxBEPiWnAJUGn8_YCtUAgptrXjIVgAgC2EATtnjnC8BEAH1I3YqygpLjXbFmi-ehuIijJ6f-4naOATHz7Y07HPIPPZ8E67C9juvaet84rUfhsx_hekHr2NKfqDJdzen80CJf915N6VYjMGlmF3c7Z-wk56G7J_ermv27f27i_pjsfn84VN9tilIGj0ViqxoPepOqp5s5zX0WnQOemOqiozSpu07omUvO4MadStKAGFLWQkrTCvX7NUxd5fiz9nnqRlDdstctPVxzg3qSkgLplL_p6pUJVqlYKEv_qKXcU7L79woI6U8jLBmr4_q8OicfN_sUhgp7RuE5lBQc1fQYp_fJs7t6Ls7-aeRBbw8AnL53m3_BF0DDGeVFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547333284</pqid></control><display><type>article</type><title>Real-Time Metabolic Analysis of Living Cancer Cells with Correlated Cellular Spectro-microscopy</title><source>MEDLINE</source><source>ACS Publications</source><creator>Quaroni, Luca ; Zlateva, Theodora</creator><creatorcontrib>Quaroni, Luca ; Zlateva, Theodora</creatorcontrib><description>In recent years, major efforts have been devoted to the application of microscopy with mid-infrared light to the study of living cells and tissue. Despite this interest, infrared (IR) microscopy has not realized its full potential in the molecular characterization of living systems. This is partly due to the fact that current approaches for data mining and analysis of IR absorption spectra have not evolved comparably to measurement technology and are not up to the interpretation of the complex spectra of living systems such as cells and tissue. In this work we show that the use of two-dimensional correlation spectroscopy coupled to IR absorption spectro-microscopy allows us to extract the spectral components of individual metabolites from time-resolved IR spectra of living cells. We call this method correlated cellular spectro-microscopy, and we implement it in the study of the glycolytic metabolism of cancer cells. We show that the method can detect intermediates of the glycolytic pathway, quantify their rate of formation, and correlate this with variations in pH, all in a single measurement. We propose the method as a useful tool for the quantitative description of metabolic processes in living cells and for the validation of drug candidates aimed at suppressing glycolysis in cancer cells.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac501561x</identifier><identifier>PMID: 24914618</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adenocarcinoma - metabolism ; Adenocarcinoma - pathology ; Cancer ; Carbon Dioxide - analysis ; Carbon Dioxide - metabolism ; Cell Line, Tumor ; Cells ; Cellular ; Correlation analysis ; Data mining ; Glucose - analysis ; Glucose - metabolism ; Glycolysis ; Humans ; Hydrogen-Ion Concentration ; Infrared radiation ; Kinetics ; Lung Neoplasms - metabolism ; Lung Neoplasms - pathology ; Metabolism ; Metabolites ; Microscopy ; Microscopy - methods ; Spectra ; Spectroscopy, Fourier Transform Infrared - methods</subject><ispartof>Analytical chemistry (Washington), 2014-07, Vol.86 (14), p.6887-6895</ispartof><rights>Copyright American Chemical Society Jul 15, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-5a82be16d35fa8de60f62dc0f7799a7567bfdaa99a3d71616b2400284392827b3</citedby><cites>FETCH-LOGICAL-a376t-5a82be16d35fa8de60f62dc0f7799a7567bfdaa99a3d71616b2400284392827b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac501561x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac501561x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24914618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quaroni, Luca</creatorcontrib><creatorcontrib>Zlateva, Theodora</creatorcontrib><title>Real-Time Metabolic Analysis of Living Cancer Cells with Correlated Cellular Spectro-microscopy</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>In recent years, major efforts have been devoted to the application of microscopy with mid-infrared light to the study of living cells and tissue. Despite this interest, infrared (IR) microscopy has not realized its full potential in the molecular characterization of living systems. This is partly due to the fact that current approaches for data mining and analysis of IR absorption spectra have not evolved comparably to measurement technology and are not up to the interpretation of the complex spectra of living systems such as cells and tissue. In this work we show that the use of two-dimensional correlation spectroscopy coupled to IR absorption spectro-microscopy allows us to extract the spectral components of individual metabolites from time-resolved IR spectra of living cells. We call this method correlated cellular spectro-microscopy, and we implement it in the study of the glycolytic metabolism of cancer cells. We show that the method can detect intermediates of the glycolytic pathway, quantify their rate of formation, and correlate this with variations in pH, all in a single measurement. We propose the method as a useful tool for the quantitative description of metabolic processes in living cells and for the validation of drug candidates aimed at suppressing glycolysis in cancer cells.</description><subject>Adenocarcinoma - metabolism</subject><subject>Adenocarcinoma - pathology</subject><subject>Cancer</subject><subject>Carbon Dioxide - analysis</subject><subject>Carbon Dioxide - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Cells</subject><subject>Cellular</subject><subject>Correlation analysis</subject><subject>Data mining</subject><subject>Glucose - analysis</subject><subject>Glucose - metabolism</subject><subject>Glycolysis</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Infrared radiation</subject><subject>Kinetics</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microscopy</subject><subject>Microscopy - methods</subject><subject>Spectra</subject><subject>Spectroscopy, Fourier Transform Infrared - methods</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0V2L1DAUBuAgLu44euEfkIAIelE9J2k-erkUv2AWQdfrcpqmmqWdjEm7Ov9-OzvrsuiFVwnh4c1JXsaeIbxBEPiWnAJUGn8_YCtUAgptrXjIVgAgC2EATtnjnC8BEAH1I3YqygpLjXbFmi-ehuIijJ6f-4naOATHz7Y07HPIPPZ8E67C9juvaet84rUfhsx_hekHr2NKfqDJdzen80CJf915N6VYjMGlmF3c7Z-wk56G7J_ermv27f27i_pjsfn84VN9tilIGj0ViqxoPepOqp5s5zX0WnQOemOqiozSpu07omUvO4MadStKAGFLWQkrTCvX7NUxd5fiz9nnqRlDdstctPVxzg3qSkgLplL_p6pUJVqlYKEv_qKXcU7L79woI6U8jLBmr4_q8OicfN_sUhgp7RuE5lBQc1fQYp_fJs7t6Ls7-aeRBbw8AnL53m3_BF0DDGeVFA</recordid><startdate>20140715</startdate><enddate>20140715</enddate><creator>Quaroni, Luca</creator><creator>Zlateva, Theodora</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20140715</creationdate><title>Real-Time Metabolic Analysis of Living Cancer Cells with Correlated Cellular Spectro-microscopy</title><author>Quaroni, Luca ; Zlateva, Theodora</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-5a82be16d35fa8de60f62dc0f7799a7567bfdaa99a3d71616b2400284392827b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adenocarcinoma - metabolism</topic><topic>Adenocarcinoma - pathology</topic><topic>Cancer</topic><topic>Carbon Dioxide - analysis</topic><topic>Carbon Dioxide - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Cells</topic><topic>Cellular</topic><topic>Correlation analysis</topic><topic>Data mining</topic><topic>Glucose - analysis</topic><topic>Glucose - metabolism</topic><topic>Glycolysis</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Infrared radiation</topic><topic>Kinetics</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microscopy</topic><topic>Microscopy - methods</topic><topic>Spectra</topic><topic>Spectroscopy, Fourier Transform Infrared - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quaroni, Luca</creatorcontrib><creatorcontrib>Zlateva, Theodora</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quaroni, Luca</au><au>Zlateva, Theodora</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Metabolic Analysis of Living Cancer Cells with Correlated Cellular Spectro-microscopy</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2014-07-15</date><risdate>2014</risdate><volume>86</volume><issue>14</issue><spage>6887</spage><epage>6895</epage><pages>6887-6895</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>In recent years, major efforts have been devoted to the application of microscopy with mid-infrared light to the study of living cells and tissue. Despite this interest, infrared (IR) microscopy has not realized its full potential in the molecular characterization of living systems. This is partly due to the fact that current approaches for data mining and analysis of IR absorption spectra have not evolved comparably to measurement technology and are not up to the interpretation of the complex spectra of living systems such as cells and tissue. In this work we show that the use of two-dimensional correlation spectroscopy coupled to IR absorption spectro-microscopy allows us to extract the spectral components of individual metabolites from time-resolved IR spectra of living cells. We call this method correlated cellular spectro-microscopy, and we implement it in the study of the glycolytic metabolism of cancer cells. We show that the method can detect intermediates of the glycolytic pathway, quantify their rate of formation, and correlate this with variations in pH, all in a single measurement. We propose the method as a useful tool for the quantitative description of metabolic processes in living cells and for the validation of drug candidates aimed at suppressing glycolysis in cancer cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24914618</pmid><doi>10.1021/ac501561x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2014-07, Vol.86 (14), p.6887-6895
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1692380795
source MEDLINE; ACS Publications
subjects Adenocarcinoma - metabolism
Adenocarcinoma - pathology
Cancer
Carbon Dioxide - analysis
Carbon Dioxide - metabolism
Cell Line, Tumor
Cells
Cellular
Correlation analysis
Data mining
Glucose - analysis
Glucose - metabolism
Glycolysis
Humans
Hydrogen-Ion Concentration
Infrared radiation
Kinetics
Lung Neoplasms - metabolism
Lung Neoplasms - pathology
Metabolism
Metabolites
Microscopy
Microscopy - methods
Spectra
Spectroscopy, Fourier Transform Infrared - methods
title Real-Time Metabolic Analysis of Living Cancer Cells with Correlated Cellular Spectro-microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Metabolic%20Analysis%20of%20Living%20Cancer%20Cells%20with%20Correlated%20Cellular%20Spectro-microscopy&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Quaroni,%20Luca&rft.date=2014-07-15&rft.volume=86&rft.issue=14&rft.spage=6887&rft.epage=6895&rft.pages=6887-6895&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac501561x&rft_dat=%3Cproquest_cross%3E1692380795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547333284&rft_id=info:pmid/24914618&rfr_iscdi=true