Real-Time Metabolic Analysis of Living Cancer Cells with Correlated Cellular Spectro-microscopy
In recent years, major efforts have been devoted to the application of microscopy with mid-infrared light to the study of living cells and tissue. Despite this interest, infrared (IR) microscopy has not realized its full potential in the molecular characterization of living systems. This is partly d...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2014-07, Vol.86 (14), p.6887-6895 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6895 |
---|---|
container_issue | 14 |
container_start_page | 6887 |
container_title | Analytical chemistry (Washington) |
container_volume | 86 |
creator | Quaroni, Luca Zlateva, Theodora |
description | In recent years, major efforts have been devoted to the application of microscopy with mid-infrared light to the study of living cells and tissue. Despite this interest, infrared (IR) microscopy has not realized its full potential in the molecular characterization of living systems. This is partly due to the fact that current approaches for data mining and analysis of IR absorption spectra have not evolved comparably to measurement technology and are not up to the interpretation of the complex spectra of living systems such as cells and tissue. In this work we show that the use of two-dimensional correlation spectroscopy coupled to IR absorption spectro-microscopy allows us to extract the spectral components of individual metabolites from time-resolved IR spectra of living cells. We call this method correlated cellular spectro-microscopy, and we implement it in the study of the glycolytic metabolism of cancer cells. We show that the method can detect intermediates of the glycolytic pathway, quantify their rate of formation, and correlate this with variations in pH, all in a single measurement. We propose the method as a useful tool for the quantitative description of metabolic processes in living cells and for the validation of drug candidates aimed at suppressing glycolysis in cancer cells. |
doi_str_mv | 10.1021/ac501561x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692380795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692380795</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-5a82be16d35fa8de60f62dc0f7799a7567bfdaa99a3d71616b2400284392827b3</originalsourceid><addsrcrecordid>eNqF0V2L1DAUBuAgLu44euEfkIAIelE9J2k-erkUv2AWQdfrcpqmmqWdjEm7Ov9-OzvrsuiFVwnh4c1JXsaeIbxBEPiWnAJUGn8_YCtUAgptrXjIVgAgC2EATtnjnC8BEAH1I3YqygpLjXbFmi-ehuIijJ6f-4naOATHz7Y07HPIPPZ8E67C9juvaet84rUfhsx_hekHr2NKfqDJdzen80CJf915N6VYjMGlmF3c7Z-wk56G7J_ermv27f27i_pjsfn84VN9tilIGj0ViqxoPepOqp5s5zX0WnQOemOqiozSpu07omUvO4MadStKAGFLWQkrTCvX7NUxd5fiz9nnqRlDdstctPVxzg3qSkgLplL_p6pUJVqlYKEv_qKXcU7L79woI6U8jLBmr4_q8OicfN_sUhgp7RuE5lBQc1fQYp_fJs7t6Ls7-aeRBbw8AnL53m3_BF0DDGeVFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547333284</pqid></control><display><type>article</type><title>Real-Time Metabolic Analysis of Living Cancer Cells with Correlated Cellular Spectro-microscopy</title><source>MEDLINE</source><source>ACS Publications</source><creator>Quaroni, Luca ; Zlateva, Theodora</creator><creatorcontrib>Quaroni, Luca ; Zlateva, Theodora</creatorcontrib><description>In recent years, major efforts have been devoted to the application of microscopy with mid-infrared light to the study of living cells and tissue. Despite this interest, infrared (IR) microscopy has not realized its full potential in the molecular characterization of living systems. This is partly due to the fact that current approaches for data mining and analysis of IR absorption spectra have not evolved comparably to measurement technology and are not up to the interpretation of the complex spectra of living systems such as cells and tissue. In this work we show that the use of two-dimensional correlation spectroscopy coupled to IR absorption spectro-microscopy allows us to extract the spectral components of individual metabolites from time-resolved IR spectra of living cells. We call this method correlated cellular spectro-microscopy, and we implement it in the study of the glycolytic metabolism of cancer cells. We show that the method can detect intermediates of the glycolytic pathway, quantify their rate of formation, and correlate this with variations in pH, all in a single measurement. We propose the method as a useful tool for the quantitative description of metabolic processes in living cells and for the validation of drug candidates aimed at suppressing glycolysis in cancer cells.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac501561x</identifier><identifier>PMID: 24914618</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adenocarcinoma - metabolism ; Adenocarcinoma - pathology ; Cancer ; Carbon Dioxide - analysis ; Carbon Dioxide - metabolism ; Cell Line, Tumor ; Cells ; Cellular ; Correlation analysis ; Data mining ; Glucose - analysis ; Glucose - metabolism ; Glycolysis ; Humans ; Hydrogen-Ion Concentration ; Infrared radiation ; Kinetics ; Lung Neoplasms - metabolism ; Lung Neoplasms - pathology ; Metabolism ; Metabolites ; Microscopy ; Microscopy - methods ; Spectra ; Spectroscopy, Fourier Transform Infrared - methods</subject><ispartof>Analytical chemistry (Washington), 2014-07, Vol.86 (14), p.6887-6895</ispartof><rights>Copyright American Chemical Society Jul 15, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-5a82be16d35fa8de60f62dc0f7799a7567bfdaa99a3d71616b2400284392827b3</citedby><cites>FETCH-LOGICAL-a376t-5a82be16d35fa8de60f62dc0f7799a7567bfdaa99a3d71616b2400284392827b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac501561x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac501561x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24914618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quaroni, Luca</creatorcontrib><creatorcontrib>Zlateva, Theodora</creatorcontrib><title>Real-Time Metabolic Analysis of Living Cancer Cells with Correlated Cellular Spectro-microscopy</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>In recent years, major efforts have been devoted to the application of microscopy with mid-infrared light to the study of living cells and tissue. Despite this interest, infrared (IR) microscopy has not realized its full potential in the molecular characterization of living systems. This is partly due to the fact that current approaches for data mining and analysis of IR absorption spectra have not evolved comparably to measurement technology and are not up to the interpretation of the complex spectra of living systems such as cells and tissue. In this work we show that the use of two-dimensional correlation spectroscopy coupled to IR absorption spectro-microscopy allows us to extract the spectral components of individual metabolites from time-resolved IR spectra of living cells. We call this method correlated cellular spectro-microscopy, and we implement it in the study of the glycolytic metabolism of cancer cells. We show that the method can detect intermediates of the glycolytic pathway, quantify their rate of formation, and correlate this with variations in pH, all in a single measurement. We propose the method as a useful tool for the quantitative description of metabolic processes in living cells and for the validation of drug candidates aimed at suppressing glycolysis in cancer cells.</description><subject>Adenocarcinoma - metabolism</subject><subject>Adenocarcinoma - pathology</subject><subject>Cancer</subject><subject>Carbon Dioxide - analysis</subject><subject>Carbon Dioxide - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Cells</subject><subject>Cellular</subject><subject>Correlation analysis</subject><subject>Data mining</subject><subject>Glucose - analysis</subject><subject>Glucose - metabolism</subject><subject>Glycolysis</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Infrared radiation</subject><subject>Kinetics</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microscopy</subject><subject>Microscopy - methods</subject><subject>Spectra</subject><subject>Spectroscopy, Fourier Transform Infrared - methods</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0V2L1DAUBuAgLu44euEfkIAIelE9J2k-erkUv2AWQdfrcpqmmqWdjEm7Ov9-OzvrsuiFVwnh4c1JXsaeIbxBEPiWnAJUGn8_YCtUAgptrXjIVgAgC2EATtnjnC8BEAH1I3YqygpLjXbFmi-ehuIijJ6f-4naOATHz7Y07HPIPPZ8E67C9juvaet84rUfhsx_hekHr2NKfqDJdzen80CJf915N6VYjMGlmF3c7Z-wk56G7J_ermv27f27i_pjsfn84VN9tilIGj0ViqxoPepOqp5s5zX0WnQOemOqiozSpu07omUvO4MadStKAGFLWQkrTCvX7NUxd5fiz9nnqRlDdstctPVxzg3qSkgLplL_p6pUJVqlYKEv_qKXcU7L79woI6U8jLBmr4_q8OicfN_sUhgp7RuE5lBQc1fQYp_fJs7t6Ls7-aeRBbw8AnL53m3_BF0DDGeVFA</recordid><startdate>20140715</startdate><enddate>20140715</enddate><creator>Quaroni, Luca</creator><creator>Zlateva, Theodora</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20140715</creationdate><title>Real-Time Metabolic Analysis of Living Cancer Cells with Correlated Cellular Spectro-microscopy</title><author>Quaroni, Luca ; Zlateva, Theodora</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-5a82be16d35fa8de60f62dc0f7799a7567bfdaa99a3d71616b2400284392827b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adenocarcinoma - metabolism</topic><topic>Adenocarcinoma - pathology</topic><topic>Cancer</topic><topic>Carbon Dioxide - analysis</topic><topic>Carbon Dioxide - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Cells</topic><topic>Cellular</topic><topic>Correlation analysis</topic><topic>Data mining</topic><topic>Glucose - analysis</topic><topic>Glucose - metabolism</topic><topic>Glycolysis</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Infrared radiation</topic><topic>Kinetics</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microscopy</topic><topic>Microscopy - methods</topic><topic>Spectra</topic><topic>Spectroscopy, Fourier Transform Infrared - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quaroni, Luca</creatorcontrib><creatorcontrib>Zlateva, Theodora</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quaroni, Luca</au><au>Zlateva, Theodora</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Metabolic Analysis of Living Cancer Cells with Correlated Cellular Spectro-microscopy</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2014-07-15</date><risdate>2014</risdate><volume>86</volume><issue>14</issue><spage>6887</spage><epage>6895</epage><pages>6887-6895</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>In recent years, major efforts have been devoted to the application of microscopy with mid-infrared light to the study of living cells and tissue. Despite this interest, infrared (IR) microscopy has not realized its full potential in the molecular characterization of living systems. This is partly due to the fact that current approaches for data mining and analysis of IR absorption spectra have not evolved comparably to measurement technology and are not up to the interpretation of the complex spectra of living systems such as cells and tissue. In this work we show that the use of two-dimensional correlation spectroscopy coupled to IR absorption spectro-microscopy allows us to extract the spectral components of individual metabolites from time-resolved IR spectra of living cells. We call this method correlated cellular spectro-microscopy, and we implement it in the study of the glycolytic metabolism of cancer cells. We show that the method can detect intermediates of the glycolytic pathway, quantify their rate of formation, and correlate this with variations in pH, all in a single measurement. We propose the method as a useful tool for the quantitative description of metabolic processes in living cells and for the validation of drug candidates aimed at suppressing glycolysis in cancer cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24914618</pmid><doi>10.1021/ac501561x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2014-07, Vol.86 (14), p.6887-6895 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692380795 |
source | MEDLINE; ACS Publications |
subjects | Adenocarcinoma - metabolism Adenocarcinoma - pathology Cancer Carbon Dioxide - analysis Carbon Dioxide - metabolism Cell Line, Tumor Cells Cellular Correlation analysis Data mining Glucose - analysis Glucose - metabolism Glycolysis Humans Hydrogen-Ion Concentration Infrared radiation Kinetics Lung Neoplasms - metabolism Lung Neoplasms - pathology Metabolism Metabolites Microscopy Microscopy - methods Spectra Spectroscopy, Fourier Transform Infrared - methods |
title | Real-Time Metabolic Analysis of Living Cancer Cells with Correlated Cellular Spectro-microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Metabolic%20Analysis%20of%20Living%20Cancer%20Cells%20with%20Correlated%20Cellular%20Spectro-microscopy&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Quaroni,%20Luca&rft.date=2014-07-15&rft.volume=86&rft.issue=14&rft.spage=6887&rft.epage=6895&rft.pages=6887-6895&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac501561x&rft_dat=%3Cproquest_cross%3E1692380795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547333284&rft_id=info:pmid/24914618&rfr_iscdi=true |