Microstructural and electrical properties of varistors prepared from coated ZnO nanopowders

This paper describes a solution-based technique for fabrication of varistor grade composite nanopowders. The method consists of coating major varistor dopants on the surface of the ZnO nanoparticles. As a result, a homogenous mixture of dopants and ZnO nanoparticles will be achieved. TEM results ind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2010-06, Vol.21 (6), p.571-577
Hauptverfasser: Shojaee, Seyyed Ali, Maleki Shahraki, Mohammad, Faghihi Sani, Mohammad Ali, Nemati, Ali, Yousefi, Abbas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 577
container_issue 6
container_start_page 571
container_title Journal of materials science. Materials in electronics
container_volume 21
creator Shojaee, Seyyed Ali
Maleki Shahraki, Mohammad
Faghihi Sani, Mohammad Ali
Nemati, Ali
Yousefi, Abbas
description This paper describes a solution-based technique for fabrication of varistor grade composite nanopowders. The method consists of coating major varistor dopants on the surface of the ZnO nanoparticles. As a result, a homogenous mixture of dopants and ZnO nanoparticles will be achieved. TEM results indicated that a composite layer of dopants with the average particle size of 9 nm on the surface of ZnO nanoparticles has been successfully prepared. Sintering of the coated powders was performed in temperatures as low as 850 °C and final specimens with average particle size of 900 nm and density of 98.5% were achieved. In comparison to conventional mixing, varistors prepared from coated nanopowders exhibited superior electrical properties and microstructure homogeneity. The improvement of electrical properties can be attributed to small grain size, homogenous distribution of dopants and elimination of large Bi-Pockets. In addition, the processing route of schottky barrier formation is quite different from what is generally considered as the method of barrier formation in ZnO grain boundaries.
doi_str_mv 10.1007/s10854-009-9959-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692374595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283697126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-60f42e0e2961d7a9eba63eee93d7412fef24db03a92d612d3219d06aca940ce63</originalsourceid><addsrcrecordid>eNqFkV9rFTEQxYNY8Nr6AXxbBMGX1cnkz24epVgVKn2pIPoQ0mRWtuzdrJNdpd_eXG9REMSnJJPfHM7MEeKphJcSoHtVJPRGtwCudc64Vj0QO2k61eoePz0UO3Cma7VBfCQel3ILAFarfie-fBgj57LyFteNw9SEOTU0UVx5jPW5cF6I15FKk4fme-CxrJlLrdMSmFIzcN43MYe13j_PV80c5rzkH4m4nImTIUyFntyfp-LjxZvr83ft5dXb9-evL9uopVxbC4NGAkJnZeqCo5tgFRE5lTotcaABdboBFRwmKzEplC6BDTE4DZGsOhUvjrrV7LeNyur3Y4k0TWGmvBUvrUPVaePM_1HslXWdxIPqs7_Q27zxXAfxfSeN1PYXJI_QYYmFafALj_vAd16CPwTjj8H4Gow_BONV7Xl-LxxKXfHAYY5j-d2I2KMB6yqHR67Ur_kr8R8D_xb_CX6nnkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871514626</pqid></control><display><type>article</type><title>Microstructural and electrical properties of varistors prepared from coated ZnO nanopowders</title><source>SpringerLink Journals</source><creator>Shojaee, Seyyed Ali ; Maleki Shahraki, Mohammad ; Faghihi Sani, Mohammad Ali ; Nemati, Ali ; Yousefi, Abbas</creator><creatorcontrib>Shojaee, Seyyed Ali ; Maleki Shahraki, Mohammad ; Faghihi Sani, Mohammad Ali ; Nemati, Ali ; Yousefi, Abbas</creatorcontrib><description>This paper describes a solution-based technique for fabrication of varistor grade composite nanopowders. The method consists of coating major varistor dopants on the surface of the ZnO nanoparticles. As a result, a homogenous mixture of dopants and ZnO nanoparticles will be achieved. TEM results indicated that a composite layer of dopants with the average particle size of 9 nm on the surface of ZnO nanoparticles has been successfully prepared. Sintering of the coated powders was performed in temperatures as low as 850 °C and final specimens with average particle size of 900 nm and density of 98.5% were achieved. In comparison to conventional mixing, varistors prepared from coated nanopowders exhibited superior electrical properties and microstructure homogeneity. The improvement of electrical properties can be attributed to small grain size, homogenous distribution of dopants and elimination of large Bi-Pockets. In addition, the processing route of schottky barrier formation is quite different from what is generally considered as the method of barrier formation in ZnO grain boundaries.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-009-9959-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Dopants ; Electrical properties ; Electronic devices ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronics ; Exact sciences and technology ; Materials Science ; Metals. Metallurgy ; Nanomaterials ; Nanoparticles ; Nanopowders ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Optical and Electronic Materials ; Physics ; Production techniques ; Surface double layers, schottky barriers, and work functions ; Surface treatment ; Varistors ; Zinc oxide</subject><ispartof>Journal of materials science. Materials in electronics, 2010-06, Vol.21 (6), p.571-577</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><rights>2015 INIST-CNRS</rights><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-60f42e0e2961d7a9eba63eee93d7412fef24db03a92d612d3219d06aca940ce63</citedby><cites>FETCH-LOGICAL-c411t-60f42e0e2961d7a9eba63eee93d7412fef24db03a92d612d3219d06aca940ce63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-009-9959-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-009-9959-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22825069$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shojaee, Seyyed Ali</creatorcontrib><creatorcontrib>Maleki Shahraki, Mohammad</creatorcontrib><creatorcontrib>Faghihi Sani, Mohammad Ali</creatorcontrib><creatorcontrib>Nemati, Ali</creatorcontrib><creatorcontrib>Yousefi, Abbas</creatorcontrib><title>Microstructural and electrical properties of varistors prepared from coated ZnO nanopowders</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>This paper describes a solution-based technique for fabrication of varistor grade composite nanopowders. The method consists of coating major varistor dopants on the surface of the ZnO nanoparticles. As a result, a homogenous mixture of dopants and ZnO nanoparticles will be achieved. TEM results indicated that a composite layer of dopants with the average particle size of 9 nm on the surface of ZnO nanoparticles has been successfully prepared. Sintering of the coated powders was performed in temperatures as low as 850 °C and final specimens with average particle size of 900 nm and density of 98.5% were achieved. In comparison to conventional mixing, varistors prepared from coated nanopowders exhibited superior electrical properties and microstructure homogeneity. The improvement of electrical properties can be attributed to small grain size, homogenous distribution of dopants and elimination of large Bi-Pockets. In addition, the processing route of schottky barrier formation is quite different from what is generally considered as the method of barrier formation in ZnO grain boundaries.</description><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dopants</subject><subject>Electrical properties</subject><subject>Electronic devices</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Materials Science</subject><subject>Metals. Metallurgy</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanopowders</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Surface double layers, schottky barriers, and work functions</subject><subject>Surface treatment</subject><subject>Varistors</subject><subject>Zinc oxide</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkV9rFTEQxYNY8Nr6AXxbBMGX1cnkz24epVgVKn2pIPoQ0mRWtuzdrJNdpd_eXG9REMSnJJPfHM7MEeKphJcSoHtVJPRGtwCudc64Vj0QO2k61eoePz0UO3Cma7VBfCQel3ILAFarfie-fBgj57LyFteNw9SEOTU0UVx5jPW5cF6I15FKk4fme-CxrJlLrdMSmFIzcN43MYe13j_PV80c5rzkH4m4nImTIUyFntyfp-LjxZvr83ft5dXb9-evL9uopVxbC4NGAkJnZeqCo5tgFRE5lTotcaABdboBFRwmKzEplC6BDTE4DZGsOhUvjrrV7LeNyur3Y4k0TWGmvBUvrUPVaePM_1HslXWdxIPqs7_Q27zxXAfxfSeN1PYXJI_QYYmFafALj_vAd16CPwTjj8H4Gow_BONV7Xl-LxxKXfHAYY5j-d2I2KMB6yqHR67Ur_kr8R8D_xb_CX6nnkQ</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Shojaee, Seyyed Ali</creator><creator>Maleki Shahraki, Mohammad</creator><creator>Faghihi Sani, Mohammad Ali</creator><creator>Nemati, Ali</creator><creator>Yousefi, Abbas</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20100601</creationdate><title>Microstructural and electrical properties of varistors prepared from coated ZnO nanopowders</title><author>Shojaee, Seyyed Ali ; Maleki Shahraki, Mohammad ; Faghihi Sani, Mohammad Ali ; Nemati, Ali ; Yousefi, Abbas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-60f42e0e2961d7a9eba63eee93d7412fef24db03a92d612d3219d06aca940ce63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dopants</topic><topic>Electrical properties</topic><topic>Electronic devices</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Materials Science</topic><topic>Metals. Metallurgy</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanopowders</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Surface double layers, schottky barriers, and work functions</topic><topic>Surface treatment</topic><topic>Varistors</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shojaee, Seyyed Ali</creatorcontrib><creatorcontrib>Maleki Shahraki, Mohammad</creatorcontrib><creatorcontrib>Faghihi Sani, Mohammad Ali</creatorcontrib><creatorcontrib>Nemati, Ali</creatorcontrib><creatorcontrib>Yousefi, Abbas</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shojaee, Seyyed Ali</au><au>Maleki Shahraki, Mohammad</au><au>Faghihi Sani, Mohammad Ali</au><au>Nemati, Ali</au><au>Yousefi, Abbas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural and electrical properties of varistors prepared from coated ZnO nanopowders</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>21</volume><issue>6</issue><spage>571</spage><epage>577</epage><pages>571-577</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>This paper describes a solution-based technique for fabrication of varistor grade composite nanopowders. The method consists of coating major varistor dopants on the surface of the ZnO nanoparticles. As a result, a homogenous mixture of dopants and ZnO nanoparticles will be achieved. TEM results indicated that a composite layer of dopants with the average particle size of 9 nm on the surface of ZnO nanoparticles has been successfully prepared. Sintering of the coated powders was performed in temperatures as low as 850 °C and final specimens with average particle size of 900 nm and density of 98.5% were achieved. In comparison to conventional mixing, varistors prepared from coated nanopowders exhibited superior electrical properties and microstructure homogeneity. The improvement of electrical properties can be attributed to small grain size, homogenous distribution of dopants and elimination of large Bi-Pockets. In addition, the processing route of schottky barrier formation is quite different from what is generally considered as the method of barrier formation in ZnO grain boundaries.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10854-009-9959-3</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2010-06, Vol.21 (6), p.571-577
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_miscellaneous_1692374595
source SpringerLink Journals
subjects Applied sciences
Characterization and Evaluation of Materials
Chemistry and Materials Science
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Dopants
Electrical properties
Electronic devices
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronics
Exact sciences and technology
Materials Science
Metals. Metallurgy
Nanomaterials
Nanoparticles
Nanopowders
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Optical and Electronic Materials
Physics
Production techniques
Surface double layers, schottky barriers, and work functions
Surface treatment
Varistors
Zinc oxide
title Microstructural and electrical properties of varistors prepared from coated ZnO nanopowders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A25%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20and%20electrical%20properties%20of%20varistors%20prepared%20from%20coated%20ZnO%20nanopowders&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Shojaee,%20Seyyed%20Ali&rft.date=2010-06-01&rft.volume=21&rft.issue=6&rft.spage=571&rft.epage=577&rft.pages=571-577&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-009-9959-3&rft_dat=%3Cproquest_cross%3E1283697126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871514626&rft_id=info:pmid/&rfr_iscdi=true