Intracellular Tracking of Single Native Molecules with Electroporation-Delivered Quantum Dots

Quantum dots (QDs) have found a wide range of biological applications as fluorophores due to their extraordinary brightness and high photostability that are far superior to those of conventional organic dyes. These traits are particularly appealing for studying cell biology under a cellular autofluo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2014-11, Vol.86 (22), p.11403-11409
Hauptverfasser: Sun, Chen, Cao, Zhenning, Wu, Min, Lu, Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11409
container_issue 22
container_start_page 11403
container_title Analytical chemistry (Washington)
container_volume 86
creator Sun, Chen
Cao, Zhenning
Wu, Min
Lu, Chang
description Quantum dots (QDs) have found a wide range of biological applications as fluorophores due to their extraordinary brightness and high photostability that are far superior to those of conventional organic dyes. These traits are particularly appealing for studying cell biology under a cellular autofluorescence background and with a long observation period. However, it remains the most important open challenge to target QDs at native intracellular molecules and organelles in live cells. Endocytosis-based delivery methods lead to QDs encapsulated in vesicles that have their surface biorecognition element hidden from the intracellular environment. The probing of native molecules using QDs has been seriously hindered by the lack of consistent approaches for delivery of QDs with exposed surface groups. In this study, we demonstrate that electroporation (i.e., the application of short electric pulses for cell permeabilization) generates reproducible results for delivering QDs into cells. We show evidence that electroporation-based delivery does not involve endocytosis or vesicle encapsulation of QDs. The amount of QD loading and the resulting cell viability can be adjusted by varying the parameters associated with the electroporation operation. To demonstrate the application of our approach for intracellular targeting, we study single-molecule motility of kinesin in live cells by labeling native kinesins using electroporation-delivered QDs. We envision that electroporation may serve as a simple and universal tool for delivering QDs into cells to label and probe native molecules and organelles.
doi_str_mv 10.1021/ac503363m
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692366903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1626164661</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-b89e8fa40594486eef67210ee1388b66ff924501cbfd6ebc06e3f1ed065ed1e13</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmCrAtFt4cAfQJYQUnsIzNjOJDlW_aJSKUKUYxU5yRhSknixkyL-fb3aUiE4cBpbfvRaMyPES4S3CArf2TYHrUmPO2KFuYKMylI9ESsA0JkqAHbFXoy3AIiA9EzsqlwbhNysxM3FNAfb8jAsgw3yOp2_99NX6Z38nOrA8srO_R3LD37gdhk4yp_9_E2eptsc_NqH9Oyn7ISHpAJ38tNip3kZ5Ymf43Px1Nkh8ouHui--nJ1eH7_PLj-eXxwfXWZWFzRnTVlx6ayBvDKmJGZHhUJgRl2WDZFzlTI5YNu4jrhpgVg75A4o5w6T2hcH29x18D8WjnM99nHTlJ3YL7FGqpQmqtKU_k8VIRmiTerrv-itX8KUGtmoAg0VpkzqcKva4GMM7Op16EcbftUI9WY99eN6kn31kLg0I3eP8vc-EnizBbaNf_z2T9A9hcqVsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627146748</pqid></control><display><type>article</type><title>Intracellular Tracking of Single Native Molecules with Electroporation-Delivered Quantum Dots</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Sun, Chen ; Cao, Zhenning ; Wu, Min ; Lu, Chang</creator><creatorcontrib>Sun, Chen ; Cao, Zhenning ; Wu, Min ; Lu, Chang</creatorcontrib><description>Quantum dots (QDs) have found a wide range of biological applications as fluorophores due to their extraordinary brightness and high photostability that are far superior to those of conventional organic dyes. These traits are particularly appealing for studying cell biology under a cellular autofluorescence background and with a long observation period. However, it remains the most important open challenge to target QDs at native intracellular molecules and organelles in live cells. Endocytosis-based delivery methods lead to QDs encapsulated in vesicles that have their surface biorecognition element hidden from the intracellular environment. The probing of native molecules using QDs has been seriously hindered by the lack of consistent approaches for delivery of QDs with exposed surface groups. In this study, we demonstrate that electroporation (i.e., the application of short electric pulses for cell permeabilization) generates reproducible results for delivering QDs into cells. We show evidence that electroporation-based delivery does not involve endocytosis or vesicle encapsulation of QDs. The amount of QD loading and the resulting cell viability can be adjusted by varying the parameters associated with the electroporation operation. To demonstrate the application of our approach for intracellular targeting, we study single-molecule motility of kinesin in live cells by labeling native kinesins using electroporation-delivered QDs. We envision that electroporation may serve as a simple and universal tool for delivering QDs into cells to label and probe native molecules and organelles.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac503363m</identifier><identifier>PMID: 25341054</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Animals ; Biochemistry ; Cell Survival ; Cells, Cultured ; Cellular ; Cellular biology ; CHO Cells ; Cricetulus ; Electroporation ; Encapsulation ; Intracellular Space - metabolism ; Kinesin - analysis ; Microfluidic Analytical Techniques ; Molecules ; Organelles ; Quantum Dots ; Vesicles</subject><ispartof>Analytical chemistry (Washington), 2014-11, Vol.86 (22), p.11403-11409</ispartof><rights>Copyright American Chemical Society Nov 18, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-b89e8fa40594486eef67210ee1388b66ff924501cbfd6ebc06e3f1ed065ed1e13</citedby><cites>FETCH-LOGICAL-a376t-b89e8fa40594486eef67210ee1388b66ff924501cbfd6ebc06e3f1ed065ed1e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac503363m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac503363m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25341054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Chen</creatorcontrib><creatorcontrib>Cao, Zhenning</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><creatorcontrib>Lu, Chang</creatorcontrib><title>Intracellular Tracking of Single Native Molecules with Electroporation-Delivered Quantum Dots</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Quantum dots (QDs) have found a wide range of biological applications as fluorophores due to their extraordinary brightness and high photostability that are far superior to those of conventional organic dyes. These traits are particularly appealing for studying cell biology under a cellular autofluorescence background and with a long observation period. However, it remains the most important open challenge to target QDs at native intracellular molecules and organelles in live cells. Endocytosis-based delivery methods lead to QDs encapsulated in vesicles that have their surface biorecognition element hidden from the intracellular environment. The probing of native molecules using QDs has been seriously hindered by the lack of consistent approaches for delivery of QDs with exposed surface groups. In this study, we demonstrate that electroporation (i.e., the application of short electric pulses for cell permeabilization) generates reproducible results for delivering QDs into cells. We show evidence that electroporation-based delivery does not involve endocytosis or vesicle encapsulation of QDs. The amount of QD loading and the resulting cell viability can be adjusted by varying the parameters associated with the electroporation operation. To demonstrate the application of our approach for intracellular targeting, we study single-molecule motility of kinesin in live cells by labeling native kinesins using electroporation-delivered QDs. We envision that electroporation may serve as a simple and universal tool for delivering QDs into cells to label and probe native molecules and organelles.</description><subject>Analytical chemistry</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Cell Survival</subject><subject>Cells, Cultured</subject><subject>Cellular</subject><subject>Cellular biology</subject><subject>CHO Cells</subject><subject>Cricetulus</subject><subject>Electroporation</subject><subject>Encapsulation</subject><subject>Intracellular Space - metabolism</subject><subject>Kinesin - analysis</subject><subject>Microfluidic Analytical Techniques</subject><subject>Molecules</subject><subject>Organelles</subject><subject>Quantum Dots</subject><subject>Vesicles</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1v1DAQBmCrAtFt4cAfQJYQUnsIzNjOJDlW_aJSKUKUYxU5yRhSknixkyL-fb3aUiE4cBpbfvRaMyPES4S3CArf2TYHrUmPO2KFuYKMylI9ESsA0JkqAHbFXoy3AIiA9EzsqlwbhNysxM3FNAfb8jAsgw3yOp2_99NX6Z38nOrA8srO_R3LD37gdhk4yp_9_E2eptsc_NqH9Oyn7ISHpAJ38tNip3kZ5Ymf43Px1Nkh8ouHui--nJ1eH7_PLj-eXxwfXWZWFzRnTVlx6ayBvDKmJGZHhUJgRl2WDZFzlTI5YNu4jrhpgVg75A4o5w6T2hcH29x18D8WjnM99nHTlJ3YL7FGqpQmqtKU_k8VIRmiTerrv-itX8KUGtmoAg0VpkzqcKva4GMM7Op16EcbftUI9WY99eN6kn31kLg0I3eP8vc-EnizBbaNf_z2T9A9hcqVsw</recordid><startdate>20141118</startdate><enddate>20141118</enddate><creator>Sun, Chen</creator><creator>Cao, Zhenning</creator><creator>Wu, Min</creator><creator>Lu, Chang</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20141118</creationdate><title>Intracellular Tracking of Single Native Molecules with Electroporation-Delivered Quantum Dots</title><author>Sun, Chen ; Cao, Zhenning ; Wu, Min ; Lu, Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-b89e8fa40594486eef67210ee1388b66ff924501cbfd6ebc06e3f1ed065ed1e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analytical chemistry</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Cell Survival</topic><topic>Cells, Cultured</topic><topic>Cellular</topic><topic>Cellular biology</topic><topic>CHO Cells</topic><topic>Cricetulus</topic><topic>Electroporation</topic><topic>Encapsulation</topic><topic>Intracellular Space - metabolism</topic><topic>Kinesin - analysis</topic><topic>Microfluidic Analytical Techniques</topic><topic>Molecules</topic><topic>Organelles</topic><topic>Quantum Dots</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Chen</creatorcontrib><creatorcontrib>Cao, Zhenning</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><creatorcontrib>Lu, Chang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Chen</au><au>Cao, Zhenning</au><au>Wu, Min</au><au>Lu, Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracellular Tracking of Single Native Molecules with Electroporation-Delivered Quantum Dots</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2014-11-18</date><risdate>2014</risdate><volume>86</volume><issue>22</issue><spage>11403</spage><epage>11409</epage><pages>11403-11409</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Quantum dots (QDs) have found a wide range of biological applications as fluorophores due to their extraordinary brightness and high photostability that are far superior to those of conventional organic dyes. These traits are particularly appealing for studying cell biology under a cellular autofluorescence background and with a long observation period. However, it remains the most important open challenge to target QDs at native intracellular molecules and organelles in live cells. Endocytosis-based delivery methods lead to QDs encapsulated in vesicles that have their surface biorecognition element hidden from the intracellular environment. The probing of native molecules using QDs has been seriously hindered by the lack of consistent approaches for delivery of QDs with exposed surface groups. In this study, we demonstrate that electroporation (i.e., the application of short electric pulses for cell permeabilization) generates reproducible results for delivering QDs into cells. We show evidence that electroporation-based delivery does not involve endocytosis or vesicle encapsulation of QDs. The amount of QD loading and the resulting cell viability can be adjusted by varying the parameters associated with the electroporation operation. To demonstrate the application of our approach for intracellular targeting, we study single-molecule motility of kinesin in live cells by labeling native kinesins using electroporation-delivered QDs. We envision that electroporation may serve as a simple and universal tool for delivering QDs into cells to label and probe native molecules and organelles.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25341054</pmid><doi>10.1021/ac503363m</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2014-11, Vol.86 (22), p.11403-11409
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1692366903
source MEDLINE; American Chemical Society Journals
subjects Analytical chemistry
Animals
Biochemistry
Cell Survival
Cells, Cultured
Cellular
Cellular biology
CHO Cells
Cricetulus
Electroporation
Encapsulation
Intracellular Space - metabolism
Kinesin - analysis
Microfluidic Analytical Techniques
Molecules
Organelles
Quantum Dots
Vesicles
title Intracellular Tracking of Single Native Molecules with Electroporation-Delivered Quantum Dots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracellular%20Tracking%20of%20Single%20Native%20Molecules%20with%20Electroporation-Delivered%20Quantum%20Dots&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Sun,%20Chen&rft.date=2014-11-18&rft.volume=86&rft.issue=22&rft.spage=11403&rft.epage=11409&rft.pages=11403-11409&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac503363m&rft_dat=%3Cproquest_cross%3E1626164661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627146748&rft_id=info:pmid/25341054&rfr_iscdi=true