Conditioning of Multiple-Point Statistics Facies Simulations to Tomographic Images

Geophysical tomography captures the spatial distribution of the underlying geophysical property at a relatively high resolution, but the tomographic images tend to be blurred representations of reality and generally fail to reproduce sharp interfaces. Such models may cause significant bias when take...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical geosciences 2014-07, Vol.46 (5), p.625-645
Hauptverfasser: Lochbühler, Tobias, Pirot, Guillaume, Straubhaar, Julien, Linde, Niklas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 645
container_issue 5
container_start_page 625
container_title Mathematical geosciences
container_volume 46
creator Lochbühler, Tobias
Pirot, Guillaume
Straubhaar, Julien
Linde, Niklas
description Geophysical tomography captures the spatial distribution of the underlying geophysical property at a relatively high resolution, but the tomographic images tend to be blurred representations of reality and generally fail to reproduce sharp interfaces. Such models may cause significant bias when taken as a basis for predictive flow and transport modeling and are unsuitable for uncertainty assessment. We present a methodology in which tomograms are used to condition multiple-point statistics (MPS) simulations. A large set of geologically reasonable facies realizations and their corresponding synthetically calculated cross-hole radar tomograms are used as a training image. The training image is scanned with a direct sampling algorithm for patterns in the conditioning tomogram, while accounting for the spatially varying resolution of the tomograms. In a post-processing step, only those conditional simulations that predicted the radar traveltimes within the expected data error levels are accepted. The methodology is demonstrated on a two-facies example featuring channels and an aquifer analog of alluvial sedimentary structures with five facies. For both cases, MPS simulations exhibit the sharp interfaces and the geological patterns found in the training image. Compared to unconditioned MPS simulations, the uncertainty in transport predictions is markedly decreased for simulations conditioned to tomograms. As an improvement to other approaches relying on classical smoothness-constrained geophysical tomography, the proposed method allows for: (1) reproduction of sharp interfaces, (2) incorporation of realistic geological constraints and (3) generation of multiple realizations that enables uncertainty assessment.
doi_str_mv 10.1007/s11004-013-9484-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692359757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3358433041</sourcerecordid><originalsourceid>FETCH-LOGICAL-a481t-a07189e4f90b76d3c28bd7f46650a3203917c809883b041f5a016263e8d575653</originalsourceid><addsrcrecordid>eNqFkUtLw0AUhQdRsFZ_gLuAGzfRuZn3UoqPQkWxdT1Mk0mdkmRiZrKwv96UiIggrs5dfN-By0HoHPAVYCyuAwxBUwwkVVTSdHeAJiAFTaVi5PD75nCMTkLYYsyBMJigl5lvChedb1yzSXyZPPZVdG1l02fvmpgso4kuRJeH5M7kzoZk6eq-MnsjJNEnK1_7TWfaN5cn89psbDhFR6Wpgj37yil6vbtdzR7SxdP9fHazSA2VEFODBUhlaanwWvCC5JlcF6KknDNsSIaJApFLrKQka0yhZAYDzzixsmCCcUam6HLsbTv_3tsQde1CbqvKNNb3QQNXGWFKMPE_yhhVlBFKB_TiF7r1fdcMjwwUBcUZz2CgYKTyzofQ2VK3natN96EB6_0gehxED4Po_SB6NzjZ6ISBbTa2-9H8p_QJVhSMQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541965621</pqid></control><display><type>article</type><title>Conditioning of Multiple-Point Statistics Facies Simulations to Tomographic Images</title><source>Springer Nature - Complete Springer Journals</source><creator>Lochbühler, Tobias ; Pirot, Guillaume ; Straubhaar, Julien ; Linde, Niklas</creator><creatorcontrib>Lochbühler, Tobias ; Pirot, Guillaume ; Straubhaar, Julien ; Linde, Niklas</creatorcontrib><description>Geophysical tomography captures the spatial distribution of the underlying geophysical property at a relatively high resolution, but the tomographic images tend to be blurred representations of reality and generally fail to reproduce sharp interfaces. Such models may cause significant bias when taken as a basis for predictive flow and transport modeling and are unsuitable for uncertainty assessment. We present a methodology in which tomograms are used to condition multiple-point statistics (MPS) simulations. A large set of geologically reasonable facies realizations and their corresponding synthetically calculated cross-hole radar tomograms are used as a training image. The training image is scanned with a direct sampling algorithm for patterns in the conditioning tomogram, while accounting for the spatially varying resolution of the tomograms. In a post-processing step, only those conditional simulations that predicted the radar traveltimes within the expected data error levels are accepted. The methodology is demonstrated on a two-facies example featuring channels and an aquifer analog of alluvial sedimentary structures with five facies. For both cases, MPS simulations exhibit the sharp interfaces and the geological patterns found in the training image. Compared to unconditioned MPS simulations, the uncertainty in transport predictions is markedly decreased for simulations conditioned to tomograms. As an improvement to other approaches relying on classical smoothness-constrained geophysical tomography, the proposed method allows for: (1) reproduction of sharp interfaces, (2) incorporation of realistic geological constraints and (3) generation of multiple realizations that enables uncertainty assessment.</description><identifier>ISSN: 1874-8961</identifier><identifier>EISSN: 1874-8953</identifier><identifier>DOI: 10.1007/s11004-013-9484-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alluvial aquifers ; Chemistry and Earth Sciences ; Computer Science ; Computer simulation ; Conditioning ; Earth and Environmental Science ; Earth Sciences ; Geology ; Geophysics ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Mathematical models ; Physics ; Radar ; Sedimentary structures ; Spatial distribution ; Special Issue ; Statistics ; Statistics for Engineering ; Tomography ; Training ; Uncertainty</subject><ispartof>Mathematical geosciences, 2014-07, Vol.46 (5), p.625-645</ispartof><rights>International Association for Mathematical Geosciences 2013</rights><rights>International Association for Mathematical Geosciences 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a481t-a07189e4f90b76d3c28bd7f46650a3203917c809883b041f5a016263e8d575653</citedby><cites>FETCH-LOGICAL-a481t-a07189e4f90b76d3c28bd7f46650a3203917c809883b041f5a016263e8d575653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11004-013-9484-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11004-013-9484-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Lochbühler, Tobias</creatorcontrib><creatorcontrib>Pirot, Guillaume</creatorcontrib><creatorcontrib>Straubhaar, Julien</creatorcontrib><creatorcontrib>Linde, Niklas</creatorcontrib><title>Conditioning of Multiple-Point Statistics Facies Simulations to Tomographic Images</title><title>Mathematical geosciences</title><addtitle>Math Geosci</addtitle><description>Geophysical tomography captures the spatial distribution of the underlying geophysical property at a relatively high resolution, but the tomographic images tend to be blurred representations of reality and generally fail to reproduce sharp interfaces. Such models may cause significant bias when taken as a basis for predictive flow and transport modeling and are unsuitable for uncertainty assessment. We present a methodology in which tomograms are used to condition multiple-point statistics (MPS) simulations. A large set of geologically reasonable facies realizations and their corresponding synthetically calculated cross-hole radar tomograms are used as a training image. The training image is scanned with a direct sampling algorithm for patterns in the conditioning tomogram, while accounting for the spatially varying resolution of the tomograms. In a post-processing step, only those conditional simulations that predicted the radar traveltimes within the expected data error levels are accepted. The methodology is demonstrated on a two-facies example featuring channels and an aquifer analog of alluvial sedimentary structures with five facies. For both cases, MPS simulations exhibit the sharp interfaces and the geological patterns found in the training image. Compared to unconditioned MPS simulations, the uncertainty in transport predictions is markedly decreased for simulations conditioned to tomograms. As an improvement to other approaches relying on classical smoothness-constrained geophysical tomography, the proposed method allows for: (1) reproduction of sharp interfaces, (2) incorporation of realistic geological constraints and (3) generation of multiple realizations that enables uncertainty assessment.</description><subject>Alluvial aquifers</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Conditioning</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geology</subject><subject>Geophysics</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Radar</subject><subject>Sedimentary structures</subject><subject>Spatial distribution</subject><subject>Special Issue</subject><subject>Statistics</subject><subject>Statistics for Engineering</subject><subject>Tomography</subject><subject>Training</subject><subject>Uncertainty</subject><issn>1874-8961</issn><issn>1874-8953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUtLw0AUhQdRsFZ_gLuAGzfRuZn3UoqPQkWxdT1Mk0mdkmRiZrKwv96UiIggrs5dfN-By0HoHPAVYCyuAwxBUwwkVVTSdHeAJiAFTaVi5PD75nCMTkLYYsyBMJigl5lvChedb1yzSXyZPPZVdG1l02fvmpgso4kuRJeH5M7kzoZk6eq-MnsjJNEnK1_7TWfaN5cn89psbDhFR6Wpgj37yil6vbtdzR7SxdP9fHazSA2VEFODBUhlaanwWvCC5JlcF6KknDNsSIaJApFLrKQka0yhZAYDzzixsmCCcUam6HLsbTv_3tsQde1CbqvKNNb3QQNXGWFKMPE_yhhVlBFKB_TiF7r1fdcMjwwUBcUZz2CgYKTyzofQ2VK3natN96EB6_0gehxED4Po_SB6NzjZ6ISBbTa2-9H8p_QJVhSMQw</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Lochbühler, Tobias</creator><creator>Pirot, Guillaume</creator><creator>Straubhaar, Julien</creator><creator>Linde, Niklas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7QH</scope></search><sort><creationdate>20140701</creationdate><title>Conditioning of Multiple-Point Statistics Facies Simulations to Tomographic Images</title><author>Lochbühler, Tobias ; Pirot, Guillaume ; Straubhaar, Julien ; Linde, Niklas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a481t-a07189e4f90b76d3c28bd7f46650a3203917c809883b041f5a016263e8d575653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alluvial aquifers</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Conditioning</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geology</topic><topic>Geophysics</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Radar</topic><topic>Sedimentary structures</topic><topic>Spatial distribution</topic><topic>Special Issue</topic><topic>Statistics</topic><topic>Statistics for Engineering</topic><topic>Tomography</topic><topic>Training</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lochbühler, Tobias</creatorcontrib><creatorcontrib>Pirot, Guillaume</creatorcontrib><creatorcontrib>Straubhaar, Julien</creatorcontrib><creatorcontrib>Linde, Niklas</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Aqualine</collection><jtitle>Mathematical geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lochbühler, Tobias</au><au>Pirot, Guillaume</au><au>Straubhaar, Julien</au><au>Linde, Niklas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditioning of Multiple-Point Statistics Facies Simulations to Tomographic Images</atitle><jtitle>Mathematical geosciences</jtitle><stitle>Math Geosci</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>46</volume><issue>5</issue><spage>625</spage><epage>645</epage><pages>625-645</pages><issn>1874-8961</issn><eissn>1874-8953</eissn><abstract>Geophysical tomography captures the spatial distribution of the underlying geophysical property at a relatively high resolution, but the tomographic images tend to be blurred representations of reality and generally fail to reproduce sharp interfaces. Such models may cause significant bias when taken as a basis for predictive flow and transport modeling and are unsuitable for uncertainty assessment. We present a methodology in which tomograms are used to condition multiple-point statistics (MPS) simulations. A large set of geologically reasonable facies realizations and their corresponding synthetically calculated cross-hole radar tomograms are used as a training image. The training image is scanned with a direct sampling algorithm for patterns in the conditioning tomogram, while accounting for the spatially varying resolution of the tomograms. In a post-processing step, only those conditional simulations that predicted the radar traveltimes within the expected data error levels are accepted. The methodology is demonstrated on a two-facies example featuring channels and an aquifer analog of alluvial sedimentary structures with five facies. For both cases, MPS simulations exhibit the sharp interfaces and the geological patterns found in the training image. Compared to unconditioned MPS simulations, the uncertainty in transport predictions is markedly decreased for simulations conditioned to tomograms. As an improvement to other approaches relying on classical smoothness-constrained geophysical tomography, the proposed method allows for: (1) reproduction of sharp interfaces, (2) incorporation of realistic geological constraints and (3) generation of multiple realizations that enables uncertainty assessment.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11004-013-9484-z</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1874-8961
ispartof Mathematical geosciences, 2014-07, Vol.46 (5), p.625-645
issn 1874-8961
1874-8953
language eng
recordid cdi_proquest_miscellaneous_1692359757
source Springer Nature - Complete Springer Journals
subjects Alluvial aquifers
Chemistry and Earth Sciences
Computer Science
Computer simulation
Conditioning
Earth and Environmental Science
Earth Sciences
Geology
Geophysics
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Mathematical models
Physics
Radar
Sedimentary structures
Spatial distribution
Special Issue
Statistics
Statistics for Engineering
Tomography
Training
Uncertainty
title Conditioning of Multiple-Point Statistics Facies Simulations to Tomographic Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditioning%20of%20Multiple-Point%20Statistics%20Facies%20Simulations%20to%20Tomographic%20Images&rft.jtitle=Mathematical%20geosciences&rft.au=Lochb%C3%BChler,%20Tobias&rft.date=2014-07-01&rft.volume=46&rft.issue=5&rft.spage=625&rft.epage=645&rft.pages=625-645&rft.issn=1874-8961&rft.eissn=1874-8953&rft_id=info:doi/10.1007/s11004-013-9484-z&rft_dat=%3Cproquest_cross%3E3358433041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541965621&rft_id=info:pmid/&rfr_iscdi=true