Multi-model Modeling for Activated Sludge Process Based on Clustering Analysis under Benchmark
For wastewater treatment processes, a single model suffers from heavy burden calculation and bad accuracy. A modeling method based on auto-regressive exogenous (ARX) multi-model using improved supervised k-means clustering algorithm is proposed. The method introduced the cluster center initializatio...
Gespeichert in:
Veröffentlicht in: | Journal of applied sciences (Asian Network for Scientific Information) 2013, Vol.13 (17), p.3528-3528 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3528 |
---|---|
container_issue | 17 |
container_start_page | 3528 |
container_title | Journal of applied sciences (Asian Network for Scientific Information) |
container_volume | 13 |
creator | Qiang, Wang Xianjun, Du Ping, Yu Yongwei, Ma |
description | For wastewater treatment processes, a single model suffers from heavy burden calculation and bad accuracy. A modeling method based on auto-regressive exogenous (ARX) multi-model using improved supervised k-means clustering algorithm is proposed. The method introduced the cluster center initialization idea of CCIA algorithm into classical k-means clustering algorithm applied to group the data into clusters or second clustering by judging a preset threshold value. It will improve the clustering results to make better services for the subsequent modeling work. And the least squares method is used to construct ARX sub-models. The system model is constructed by weighting all ARX sub-models. The proposed method is used to identify the ammonia concentration model for wastewater treatment system Benchmark. Simulation results show that, the proposed method can be used to fit nonlinear characteristics of the system with high precision. |
doi_str_mv | 10.3923/jas.2013.3528.3532 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692358745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692358745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2232-a1c0dea7ec8b239a35205b0ebb6be21d959c2be8d648091e0438197d44adaa0e3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwApx85JLivzjxsa2gILUCCbhiOfa2pLhJsROkvj2OirhymV2tZlc7H0LXlEy4Yvx2a-KEEconPGdlEs5O0IiWlGW5lOz0r8_FObqIcUuI4FIVI_S-6n1XZ7vWgcerQetmg9dtwFPb1d-mA4dffO82gJ9DayFGPDMxDdsGz30fOwjDwrQx_hDriPvGQcAzaOzHzoTPS3S2Nj7C1W8do7f7u9f5Q7Z8WjzOp8vMMsZZZqglDkwBtqwYVyalIHlFoKpkBYw6lSvLKiidFCVRFNL3JVWFE8I4YwjwMbo53t2H9quH2OldHS14bxpo-6ipTJTyshD5_1ahmBRCSJKs7Gi1oY0xwFrvQ51iHTQleuCuE3c9cNcDdz1w5z_L-3a9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492644460</pqid></control><display><type>article</type><title>Multi-model Modeling for Activated Sludge Process Based on Clustering Analysis under Benchmark</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Science Alert</source><creator>Qiang, Wang ; Xianjun, Du ; Ping, Yu ; Yongwei, Ma</creator><creatorcontrib>Qiang, Wang ; Xianjun, Du ; Ping, Yu ; Yongwei, Ma</creatorcontrib><description>For wastewater treatment processes, a single model suffers from heavy burden calculation and bad accuracy. A modeling method based on auto-regressive exogenous (ARX) multi-model using improved supervised k-means clustering algorithm is proposed. The method introduced the cluster center initialization idea of CCIA algorithm into classical k-means clustering algorithm applied to group the data into clusters or second clustering by judging a preset threshold value. It will improve the clustering results to make better services for the subsequent modeling work. And the least squares method is used to construct ARX sub-models. The system model is constructed by weighting all ARX sub-models. The proposed method is used to identify the ammonia concentration model for wastewater treatment system Benchmark. Simulation results show that, the proposed method can be used to fit nonlinear characteristics of the system with high precision.</description><identifier>ISSN: 1812-5654</identifier><identifier>EISSN: 1812-5662</identifier><identifier>DOI: 10.3923/jas.2013.3528.3532</identifier><language>eng</language><subject>Algorithms ; Benchmarking ; Clustering ; Clusters ; Construction ; Least squares method ; Mathematical models ; Wastewater treatment</subject><ispartof>Journal of applied sciences (Asian Network for Scientific Information), 2013, Vol.13 (17), p.3528-3528</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2232-a1c0dea7ec8b239a35205b0ebb6be21d959c2be8d648091e0438197d44adaa0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,4026,4126,27930,27931,27932</link.rule.ids></links><search><creatorcontrib>Qiang, Wang</creatorcontrib><creatorcontrib>Xianjun, Du</creatorcontrib><creatorcontrib>Ping, Yu</creatorcontrib><creatorcontrib>Yongwei, Ma</creatorcontrib><title>Multi-model Modeling for Activated Sludge Process Based on Clustering Analysis under Benchmark</title><title>Journal of applied sciences (Asian Network for Scientific Information)</title><description>For wastewater treatment processes, a single model suffers from heavy burden calculation and bad accuracy. A modeling method based on auto-regressive exogenous (ARX) multi-model using improved supervised k-means clustering algorithm is proposed. The method introduced the cluster center initialization idea of CCIA algorithm into classical k-means clustering algorithm applied to group the data into clusters or second clustering by judging a preset threshold value. It will improve the clustering results to make better services for the subsequent modeling work. And the least squares method is used to construct ARX sub-models. The system model is constructed by weighting all ARX sub-models. The proposed method is used to identify the ammonia concentration model for wastewater treatment system Benchmark. Simulation results show that, the proposed method can be used to fit nonlinear characteristics of the system with high precision.</description><subject>Algorithms</subject><subject>Benchmarking</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Construction</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Wastewater treatment</subject><issn>1812-5654</issn><issn>1812-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwApx85JLivzjxsa2gILUCCbhiOfa2pLhJsROkvj2OirhymV2tZlc7H0LXlEy4Yvx2a-KEEconPGdlEs5O0IiWlGW5lOz0r8_FObqIcUuI4FIVI_S-6n1XZ7vWgcerQetmg9dtwFPb1d-mA4dffO82gJ9DayFGPDMxDdsGz30fOwjDwrQx_hDriPvGQcAzaOzHzoTPS3S2Nj7C1W8do7f7u9f5Q7Z8WjzOp8vMMsZZZqglDkwBtqwYVyalIHlFoKpkBYw6lSvLKiidFCVRFNL3JVWFE8I4YwjwMbo53t2H9quH2OldHS14bxpo-6ipTJTyshD5_1ahmBRCSJKs7Gi1oY0xwFrvQ51iHTQleuCuE3c9cNcDdz1w5z_L-3a9</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Qiang, Wang</creator><creator>Xianjun, Du</creator><creator>Ping, Yu</creator><creator>Yongwei, Ma</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2013</creationdate><title>Multi-model Modeling for Activated Sludge Process Based on Clustering Analysis under Benchmark</title><author>Qiang, Wang ; Xianjun, Du ; Ping, Yu ; Yongwei, Ma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2232-a1c0dea7ec8b239a35205b0ebb6be21d959c2be8d648091e0438197d44adaa0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Benchmarking</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Construction</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Wastewater treatment</topic><toplevel>online_resources</toplevel><creatorcontrib>Qiang, Wang</creatorcontrib><creatorcontrib>Xianjun, Du</creatorcontrib><creatorcontrib>Ping, Yu</creatorcontrib><creatorcontrib>Yongwei, Ma</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied sciences (Asian Network for Scientific Information)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiang, Wang</au><au>Xianjun, Du</au><au>Ping, Yu</au><au>Yongwei, Ma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-model Modeling for Activated Sludge Process Based on Clustering Analysis under Benchmark</atitle><jtitle>Journal of applied sciences (Asian Network for Scientific Information)</jtitle><date>2013</date><risdate>2013</risdate><volume>13</volume><issue>17</issue><spage>3528</spage><epage>3528</epage><pages>3528-3528</pages><issn>1812-5654</issn><eissn>1812-5662</eissn><abstract>For wastewater treatment processes, a single model suffers from heavy burden calculation and bad accuracy. A modeling method based on auto-regressive exogenous (ARX) multi-model using improved supervised k-means clustering algorithm is proposed. The method introduced the cluster center initialization idea of CCIA algorithm into classical k-means clustering algorithm applied to group the data into clusters or second clustering by judging a preset threshold value. It will improve the clustering results to make better services for the subsequent modeling work. And the least squares method is used to construct ARX sub-models. The system model is constructed by weighting all ARX sub-models. The proposed method is used to identify the ammonia concentration model for wastewater treatment system Benchmark. Simulation results show that, the proposed method can be used to fit nonlinear characteristics of the system with high precision.</abstract><doi>10.3923/jas.2013.3528.3532</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1812-5654 |
ispartof | Journal of applied sciences (Asian Network for Scientific Information), 2013, Vol.13 (17), p.3528-3528 |
issn | 1812-5654 1812-5662 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692358745 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Science Alert |
subjects | Algorithms Benchmarking Clustering Clusters Construction Least squares method Mathematical models Wastewater treatment |
title | Multi-model Modeling for Activated Sludge Process Based on Clustering Analysis under Benchmark |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T05%3A32%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-model%20Modeling%20for%20Activated%20Sludge%20Process%20Based%20on%20Clustering%20Analysis%20under%20Benchmark&rft.jtitle=Journal%20of%20applied%20sciences%20(Asian%20Network%20for%20Scientific%20Information)&rft.au=Qiang,%20Wang&rft.date=2013&rft.volume=13&rft.issue=17&rft.spage=3528&rft.epage=3528&rft.pages=3528-3528&rft.issn=1812-5654&rft.eissn=1812-5662&rft_id=info:doi/10.3923/jas.2013.3528.3532&rft_dat=%3Cproquest_cross%3E1692358745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492644460&rft_id=info:pmid/&rfr_iscdi=true |