Multi-model Modeling for Activated Sludge Process Based on Clustering Analysis under Benchmark

For wastewater treatment processes, a single model suffers from heavy burden calculation and bad accuracy. A modeling method based on auto-regressive exogenous (ARX) multi-model using improved supervised k-means clustering algorithm is proposed. The method introduced the cluster center initializatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied sciences (Asian Network for Scientific Information) 2013, Vol.13 (17), p.3528-3528
Hauptverfasser: Qiang, Wang, Xianjun, Du, Ping, Yu, Yongwei, Ma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3528
container_issue 17
container_start_page 3528
container_title Journal of applied sciences (Asian Network for Scientific Information)
container_volume 13
creator Qiang, Wang
Xianjun, Du
Ping, Yu
Yongwei, Ma
description For wastewater treatment processes, a single model suffers from heavy burden calculation and bad accuracy. A modeling method based on auto-regressive exogenous (ARX) multi-model using improved supervised k-means clustering algorithm is proposed. The method introduced the cluster center initialization idea of CCIA algorithm into classical k-means clustering algorithm applied to group the data into clusters or second clustering by judging a preset threshold value. It will improve the clustering results to make better services for the subsequent modeling work. And the least squares method is used to construct ARX sub-models. The system model is constructed by weighting all ARX sub-models. The proposed method is used to identify the ammonia concentration model for wastewater treatment system Benchmark. Simulation results show that, the proposed method can be used to fit nonlinear characteristics of the system with high precision.
doi_str_mv 10.3923/jas.2013.3528.3532
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692358745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692358745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2232-a1c0dea7ec8b239a35205b0ebb6be21d959c2be8d648091e0438197d44adaa0e3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwApx85JLivzjxsa2gILUCCbhiOfa2pLhJsROkvj2OirhymV2tZlc7H0LXlEy4Yvx2a-KEEconPGdlEs5O0IiWlGW5lOz0r8_FObqIcUuI4FIVI_S-6n1XZ7vWgcerQetmg9dtwFPb1d-mA4dffO82gJ9DayFGPDMxDdsGz30fOwjDwrQx_hDriPvGQcAzaOzHzoTPS3S2Nj7C1W8do7f7u9f5Q7Z8WjzOp8vMMsZZZqglDkwBtqwYVyalIHlFoKpkBYw6lSvLKiidFCVRFNL3JVWFE8I4YwjwMbo53t2H9quH2OldHS14bxpo-6ipTJTyshD5_1ahmBRCSJKs7Gi1oY0xwFrvQ51iHTQleuCuE3c9cNcDdz1w5z_L-3a9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492644460</pqid></control><display><type>article</type><title>Multi-model Modeling for Activated Sludge Process Based on Clustering Analysis under Benchmark</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Science Alert</source><creator>Qiang, Wang ; Xianjun, Du ; Ping, Yu ; Yongwei, Ma</creator><creatorcontrib>Qiang, Wang ; Xianjun, Du ; Ping, Yu ; Yongwei, Ma</creatorcontrib><description>For wastewater treatment processes, a single model suffers from heavy burden calculation and bad accuracy. A modeling method based on auto-regressive exogenous (ARX) multi-model using improved supervised k-means clustering algorithm is proposed. The method introduced the cluster center initialization idea of CCIA algorithm into classical k-means clustering algorithm applied to group the data into clusters or second clustering by judging a preset threshold value. It will improve the clustering results to make better services for the subsequent modeling work. And the least squares method is used to construct ARX sub-models. The system model is constructed by weighting all ARX sub-models. The proposed method is used to identify the ammonia concentration model for wastewater treatment system Benchmark. Simulation results show that, the proposed method can be used to fit nonlinear characteristics of the system with high precision.</description><identifier>ISSN: 1812-5654</identifier><identifier>EISSN: 1812-5662</identifier><identifier>DOI: 10.3923/jas.2013.3528.3532</identifier><language>eng</language><subject>Algorithms ; Benchmarking ; Clustering ; Clusters ; Construction ; Least squares method ; Mathematical models ; Wastewater treatment</subject><ispartof>Journal of applied sciences (Asian Network for Scientific Information), 2013, Vol.13 (17), p.3528-3528</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2232-a1c0dea7ec8b239a35205b0ebb6be21d959c2be8d648091e0438197d44adaa0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,4026,4126,27930,27931,27932</link.rule.ids></links><search><creatorcontrib>Qiang, Wang</creatorcontrib><creatorcontrib>Xianjun, Du</creatorcontrib><creatorcontrib>Ping, Yu</creatorcontrib><creatorcontrib>Yongwei, Ma</creatorcontrib><title>Multi-model Modeling for Activated Sludge Process Based on Clustering Analysis under Benchmark</title><title>Journal of applied sciences (Asian Network for Scientific Information)</title><description>For wastewater treatment processes, a single model suffers from heavy burden calculation and bad accuracy. A modeling method based on auto-regressive exogenous (ARX) multi-model using improved supervised k-means clustering algorithm is proposed. The method introduced the cluster center initialization idea of CCIA algorithm into classical k-means clustering algorithm applied to group the data into clusters or second clustering by judging a preset threshold value. It will improve the clustering results to make better services for the subsequent modeling work. And the least squares method is used to construct ARX sub-models. The system model is constructed by weighting all ARX sub-models. The proposed method is used to identify the ammonia concentration model for wastewater treatment system Benchmark. Simulation results show that, the proposed method can be used to fit nonlinear characteristics of the system with high precision.</description><subject>Algorithms</subject><subject>Benchmarking</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Construction</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Wastewater treatment</subject><issn>1812-5654</issn><issn>1812-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwApx85JLivzjxsa2gILUCCbhiOfa2pLhJsROkvj2OirhymV2tZlc7H0LXlEy4Yvx2a-KEEconPGdlEs5O0IiWlGW5lOz0r8_FObqIcUuI4FIVI_S-6n1XZ7vWgcerQetmg9dtwFPb1d-mA4dffO82gJ9DayFGPDMxDdsGz30fOwjDwrQx_hDriPvGQcAzaOzHzoTPS3S2Nj7C1W8do7f7u9f5Q7Z8WjzOp8vMMsZZZqglDkwBtqwYVyalIHlFoKpkBYw6lSvLKiidFCVRFNL3JVWFE8I4YwjwMbo53t2H9quH2OldHS14bxpo-6ipTJTyshD5_1ahmBRCSJKs7Gi1oY0xwFrvQ51iHTQleuCuE3c9cNcDdz1w5z_L-3a9</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Qiang, Wang</creator><creator>Xianjun, Du</creator><creator>Ping, Yu</creator><creator>Yongwei, Ma</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2013</creationdate><title>Multi-model Modeling for Activated Sludge Process Based on Clustering Analysis under Benchmark</title><author>Qiang, Wang ; Xianjun, Du ; Ping, Yu ; Yongwei, Ma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2232-a1c0dea7ec8b239a35205b0ebb6be21d959c2be8d648091e0438197d44adaa0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Benchmarking</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Construction</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Wastewater treatment</topic><toplevel>online_resources</toplevel><creatorcontrib>Qiang, Wang</creatorcontrib><creatorcontrib>Xianjun, Du</creatorcontrib><creatorcontrib>Ping, Yu</creatorcontrib><creatorcontrib>Yongwei, Ma</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied sciences (Asian Network for Scientific Information)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiang, Wang</au><au>Xianjun, Du</au><au>Ping, Yu</au><au>Yongwei, Ma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-model Modeling for Activated Sludge Process Based on Clustering Analysis under Benchmark</atitle><jtitle>Journal of applied sciences (Asian Network for Scientific Information)</jtitle><date>2013</date><risdate>2013</risdate><volume>13</volume><issue>17</issue><spage>3528</spage><epage>3528</epage><pages>3528-3528</pages><issn>1812-5654</issn><eissn>1812-5662</eissn><abstract>For wastewater treatment processes, a single model suffers from heavy burden calculation and bad accuracy. A modeling method based on auto-regressive exogenous (ARX) multi-model using improved supervised k-means clustering algorithm is proposed. The method introduced the cluster center initialization idea of CCIA algorithm into classical k-means clustering algorithm applied to group the data into clusters or second clustering by judging a preset threshold value. It will improve the clustering results to make better services for the subsequent modeling work. And the least squares method is used to construct ARX sub-models. The system model is constructed by weighting all ARX sub-models. The proposed method is used to identify the ammonia concentration model for wastewater treatment system Benchmark. Simulation results show that, the proposed method can be used to fit nonlinear characteristics of the system with high precision.</abstract><doi>10.3923/jas.2013.3528.3532</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1812-5654
ispartof Journal of applied sciences (Asian Network for Scientific Information), 2013, Vol.13 (17), p.3528-3528
issn 1812-5654
1812-5662
language eng
recordid cdi_proquest_miscellaneous_1692358745
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Science Alert
subjects Algorithms
Benchmarking
Clustering
Clusters
Construction
Least squares method
Mathematical models
Wastewater treatment
title Multi-model Modeling for Activated Sludge Process Based on Clustering Analysis under Benchmark
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T05%3A32%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-model%20Modeling%20for%20Activated%20Sludge%20Process%20Based%20on%20Clustering%20Analysis%20under%20Benchmark&rft.jtitle=Journal%20of%20applied%20sciences%20(Asian%20Network%20for%20Scientific%20Information)&rft.au=Qiang,%20Wang&rft.date=2013&rft.volume=13&rft.issue=17&rft.spage=3528&rft.epage=3528&rft.pages=3528-3528&rft.issn=1812-5654&rft.eissn=1812-5662&rft_id=info:doi/10.3923/jas.2013.3528.3532&rft_dat=%3Cproquest_cross%3E1692358745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492644460&rft_id=info:pmid/&rfr_iscdi=true