Nanopore Single-Molecule Analysis of DNA–Doxorubicin Interactions
Anticancer activity and toxicity of doxorubicin (Dox) are associated with its DNA intercalation. To understand the role in gene regulation and the drug mechanism, it is a challenge to detect the DNA–Dox interaction at the single-molecule level without the use of laborious, time-consuming labeling as...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2015-01, Vol.87 (1), p.338-342 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 342 |
---|---|
container_issue | 1 |
container_start_page | 338 |
container_title | Analytical chemistry (Washington) |
container_volume | 87 |
creator | Yao, Fujun Duan, Jing Wang, Ying Zhang, Yue Guo, Yanli Guo, Huilin Kang, Xiaofeng |
description | Anticancer activity and toxicity of doxorubicin (Dox) are associated with its DNA intercalation. To understand the role in gene regulation and the drug mechanism, it is a challenge to detect the DNA–Dox interaction at the single-molecule level without the use of laborious, time-consuming labeling assays and an error-prone amplification method. Here, we utilized the simplest and cheapest, yet highly sensitive, single-molecule nanopore technology to investigate the DNA–Dox interaction and explore in situ the intercalative reaction kinetics. Distinctive electronic signal patterns between DNA and the DNA–Dox complex allow protein nanopore to readily detect the changes in structure and function of DNA. After Dox insertion, nanopore unzipping time of DNA was elevated 10-fold while the blocking current decreased, demonstrating the higher affinity of the DNA–Dox complex (formation constant K f = 3.09 × 105 M–1). Continuous rapid nanopore detection in real time displayed that Dox intercalation in DNA is a two-state dynamic process: fast binding and slow conformational adaption. The nanopore platform provides a powerful tool for studying small molecule–biomacromolecule interactions and paves the way for novel applications aimed at drug screening and functional analysis. |
doi_str_mv | 10.1021/ac503926g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692356845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660395496</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-a8e76cfabe22e74a503a35b2960b9c117a91d521dbba7bbcca57f68a6cb02a6b3</originalsourceid><addsrcrecordid>eNqN0b1OwzAUBWALgWgpDLwAioSQYAhcO7GTjFXLT6VSBmCOrl2nCkrjYicS3XgH3pAnwVVLhWBh8vL5XPtcQo4pXFJg9AoVhyhjYrZDupQzCEWasl3SBYAoZAlAhxw49wJAKVCxTzqMx5m_QLtkMMHaLIzVwWNZzyod3ptKq7bSQb_GaulKF5giGE76n-8fQ_NmbCtLVdbBqG60RdWUpnaHZK_AyumjzdkjzzfXT4O7cPxwOxr0xyHGkDUhpjoRqkCpGdNJjP7NGHHJMgEyU5QmmNEpZ3QqJSZSKoU8KUSKQklgKGTUI-fr3IU1r612TT4vndJVhbU2rcupyFjERRrzf1DhG_MtCE9Pf9EX01r_-ZWK4ySJmKBeXayVssY5q4t8Ycs52mVOIV8tId8uwduTTWIr53q6ld-te3C2Bqjcj2l_gr4Abx6NHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1644773261</pqid></control><display><type>article</type><title>Nanopore Single-Molecule Analysis of DNA–Doxorubicin Interactions</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Yao, Fujun ; Duan, Jing ; Wang, Ying ; Zhang, Yue ; Guo, Yanli ; Guo, Huilin ; Kang, Xiaofeng</creator><creatorcontrib>Yao, Fujun ; Duan, Jing ; Wang, Ying ; Zhang, Yue ; Guo, Yanli ; Guo, Huilin ; Kang, Xiaofeng</creatorcontrib><description>Anticancer activity and toxicity of doxorubicin (Dox) are associated with its DNA intercalation. To understand the role in gene regulation and the drug mechanism, it is a challenge to detect the DNA–Dox interaction at the single-molecule level without the use of laborious, time-consuming labeling assays and an error-prone amplification method. Here, we utilized the simplest and cheapest, yet highly sensitive, single-molecule nanopore technology to investigate the DNA–Dox interaction and explore in situ the intercalative reaction kinetics. Distinctive electronic signal patterns between DNA and the DNA–Dox complex allow protein nanopore to readily detect the changes in structure and function of DNA. After Dox insertion, nanopore unzipping time of DNA was elevated 10-fold while the blocking current decreased, demonstrating the higher affinity of the DNA–Dox complex (formation constant K f = 3.09 × 105 M–1). Continuous rapid nanopore detection in real time displayed that Dox intercalation in DNA is a two-state dynamic process: fast binding and slow conformational adaption. The nanopore platform provides a powerful tool for studying small molecule–biomacromolecule interactions and paves the way for novel applications aimed at drug screening and functional analysis.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac503926g</identifier><identifier>PMID: 25493921</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding sites ; Biosensing Techniques - methods ; Constants ; Deoxyribonucleic acid ; DNA ; DNA Adducts - chemistry ; DNA Adducts - metabolism ; Doxorubicin - chemistry ; Doxorubicin - metabolism ; Drugs ; Electronics ; Escherichia coli Proteins - chemistry ; Hemolysin Proteins - chemistry ; Humans ; Intercalating Agents - chemistry ; Intercalation ; Kinetics ; Molecules ; Nanopores ; Nanostructure ; Nanotechnology - methods ; Nucleic Acid Conformation ; Proteins ; Toxicity</subject><ispartof>Analytical chemistry (Washington), 2015-01, Vol.87 (1), p.338-342</ispartof><rights>Copyright American Chemical Society Jan 6, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-a8e76cfabe22e74a503a35b2960b9c117a91d521dbba7bbcca57f68a6cb02a6b3</citedby><cites>FETCH-LOGICAL-a409t-a8e76cfabe22e74a503a35b2960b9c117a91d521dbba7bbcca57f68a6cb02a6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac503926g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac503926g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25493921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Fujun</creatorcontrib><creatorcontrib>Duan, Jing</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Guo, Yanli</creatorcontrib><creatorcontrib>Guo, Huilin</creatorcontrib><creatorcontrib>Kang, Xiaofeng</creatorcontrib><title>Nanopore Single-Molecule Analysis of DNA–Doxorubicin Interactions</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Anticancer activity and toxicity of doxorubicin (Dox) are associated with its DNA intercalation. To understand the role in gene regulation and the drug mechanism, it is a challenge to detect the DNA–Dox interaction at the single-molecule level without the use of laborious, time-consuming labeling assays and an error-prone amplification method. Here, we utilized the simplest and cheapest, yet highly sensitive, single-molecule nanopore technology to investigate the DNA–Dox interaction and explore in situ the intercalative reaction kinetics. Distinctive electronic signal patterns between DNA and the DNA–Dox complex allow protein nanopore to readily detect the changes in structure and function of DNA. After Dox insertion, nanopore unzipping time of DNA was elevated 10-fold while the blocking current decreased, demonstrating the higher affinity of the DNA–Dox complex (formation constant K f = 3.09 × 105 M–1). Continuous rapid nanopore detection in real time displayed that Dox intercalation in DNA is a two-state dynamic process: fast binding and slow conformational adaption. The nanopore platform provides a powerful tool for studying small molecule–biomacromolecule interactions and paves the way for novel applications aimed at drug screening and functional analysis.</description><subject>Binding sites</subject><subject>Biosensing Techniques - methods</subject><subject>Constants</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Adducts - chemistry</subject><subject>DNA Adducts - metabolism</subject><subject>Doxorubicin - chemistry</subject><subject>Doxorubicin - metabolism</subject><subject>Drugs</subject><subject>Electronics</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Hemolysin Proteins - chemistry</subject><subject>Humans</subject><subject>Intercalating Agents - chemistry</subject><subject>Intercalation</subject><subject>Kinetics</subject><subject>Molecules</subject><subject>Nanopores</subject><subject>Nanostructure</subject><subject>Nanotechnology - methods</subject><subject>Nucleic Acid Conformation</subject><subject>Proteins</subject><subject>Toxicity</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0b1OwzAUBWALgWgpDLwAioSQYAhcO7GTjFXLT6VSBmCOrl2nCkrjYicS3XgH3pAnwVVLhWBh8vL5XPtcQo4pXFJg9AoVhyhjYrZDupQzCEWasl3SBYAoZAlAhxw49wJAKVCxTzqMx5m_QLtkMMHaLIzVwWNZzyod3ptKq7bSQb_GaulKF5giGE76n-8fQ_NmbCtLVdbBqG60RdWUpnaHZK_AyumjzdkjzzfXT4O7cPxwOxr0xyHGkDUhpjoRqkCpGdNJjP7NGHHJMgEyU5QmmNEpZ3QqJSZSKoU8KUSKQklgKGTUI-fr3IU1r612TT4vndJVhbU2rcupyFjERRrzf1DhG_MtCE9Pf9EX01r_-ZWK4ySJmKBeXayVssY5q4t8Ycs52mVOIV8tId8uwduTTWIr53q6ld-te3C2Bqjcj2l_gr4Abx6NHA</recordid><startdate>20150106</startdate><enddate>20150106</enddate><creator>Yao, Fujun</creator><creator>Duan, Jing</creator><creator>Wang, Ying</creator><creator>Zhang, Yue</creator><creator>Guo, Yanli</creator><creator>Guo, Huilin</creator><creator>Kang, Xiaofeng</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20150106</creationdate><title>Nanopore Single-Molecule Analysis of DNA–Doxorubicin Interactions</title><author>Yao, Fujun ; Duan, Jing ; Wang, Ying ; Zhang, Yue ; Guo, Yanli ; Guo, Huilin ; Kang, Xiaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-a8e76cfabe22e74a503a35b2960b9c117a91d521dbba7bbcca57f68a6cb02a6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Binding sites</topic><topic>Biosensing Techniques - methods</topic><topic>Constants</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Adducts - chemistry</topic><topic>DNA Adducts - metabolism</topic><topic>Doxorubicin - chemistry</topic><topic>Doxorubicin - metabolism</topic><topic>Drugs</topic><topic>Electronics</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Hemolysin Proteins - chemistry</topic><topic>Humans</topic><topic>Intercalating Agents - chemistry</topic><topic>Intercalation</topic><topic>Kinetics</topic><topic>Molecules</topic><topic>Nanopores</topic><topic>Nanostructure</topic><topic>Nanotechnology - methods</topic><topic>Nucleic Acid Conformation</topic><topic>Proteins</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Fujun</creatorcontrib><creatorcontrib>Duan, Jing</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Guo, Yanli</creatorcontrib><creatorcontrib>Guo, Huilin</creatorcontrib><creatorcontrib>Kang, Xiaofeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Fujun</au><au>Duan, Jing</au><au>Wang, Ying</au><au>Zhang, Yue</au><au>Guo, Yanli</au><au>Guo, Huilin</au><au>Kang, Xiaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanopore Single-Molecule Analysis of DNA–Doxorubicin Interactions</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2015-01-06</date><risdate>2015</risdate><volume>87</volume><issue>1</issue><spage>338</spage><epage>342</epage><pages>338-342</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Anticancer activity and toxicity of doxorubicin (Dox) are associated with its DNA intercalation. To understand the role in gene regulation and the drug mechanism, it is a challenge to detect the DNA–Dox interaction at the single-molecule level without the use of laborious, time-consuming labeling assays and an error-prone amplification method. Here, we utilized the simplest and cheapest, yet highly sensitive, single-molecule nanopore technology to investigate the DNA–Dox interaction and explore in situ the intercalative reaction kinetics. Distinctive electronic signal patterns between DNA and the DNA–Dox complex allow protein nanopore to readily detect the changes in structure and function of DNA. After Dox insertion, nanopore unzipping time of DNA was elevated 10-fold while the blocking current decreased, demonstrating the higher affinity of the DNA–Dox complex (formation constant K f = 3.09 × 105 M–1). Continuous rapid nanopore detection in real time displayed that Dox intercalation in DNA is a two-state dynamic process: fast binding and slow conformational adaption. The nanopore platform provides a powerful tool for studying small molecule–biomacromolecule interactions and paves the way for novel applications aimed at drug screening and functional analysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25493921</pmid><doi>10.1021/ac503926g</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2015-01, Vol.87 (1), p.338-342 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692356845 |
source | MEDLINE; American Chemical Society Journals |
subjects | Binding sites Biosensing Techniques - methods Constants Deoxyribonucleic acid DNA DNA Adducts - chemistry DNA Adducts - metabolism Doxorubicin - chemistry Doxorubicin - metabolism Drugs Electronics Escherichia coli Proteins - chemistry Hemolysin Proteins - chemistry Humans Intercalating Agents - chemistry Intercalation Kinetics Molecules Nanopores Nanostructure Nanotechnology - methods Nucleic Acid Conformation Proteins Toxicity |
title | Nanopore Single-Molecule Analysis of DNA–Doxorubicin Interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanopore%20Single-Molecule%20Analysis%20of%20DNA%E2%80%93Doxorubicin%20Interactions&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Yao,%20Fujun&rft.date=2015-01-06&rft.volume=87&rft.issue=1&rft.spage=338&rft.epage=342&rft.pages=338-342&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac503926g&rft_dat=%3Cproquest_cross%3E1660395496%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1644773261&rft_id=info:pmid/25493921&rfr_iscdi=true |