Nanopore Single-Molecule Analysis of DNA–Doxorubicin Interactions

Anticancer activity and toxicity of doxorubicin (Dox) are associated with its DNA intercalation. To understand the role in gene regulation and the drug mechanism, it is a challenge to detect the DNA–Dox interaction at the single-molecule level without the use of laborious, time-consuming labeling as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2015-01, Vol.87 (1), p.338-342
Hauptverfasser: Yao, Fujun, Duan, Jing, Wang, Ying, Zhang, Yue, Guo, Yanli, Guo, Huilin, Kang, Xiaofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 342
container_issue 1
container_start_page 338
container_title Analytical chemistry (Washington)
container_volume 87
creator Yao, Fujun
Duan, Jing
Wang, Ying
Zhang, Yue
Guo, Yanli
Guo, Huilin
Kang, Xiaofeng
description Anticancer activity and toxicity of doxorubicin (Dox) are associated with its DNA intercalation. To understand the role in gene regulation and the drug mechanism, it is a challenge to detect the DNA–Dox interaction at the single-molecule level without the use of laborious, time-consuming labeling assays and an error-prone amplification method. Here, we utilized the simplest and cheapest, yet highly sensitive, single-molecule nanopore technology to investigate the DNA–Dox interaction and explore in situ the intercalative reaction kinetics. Distinctive electronic signal patterns between DNA and the DNA–Dox complex allow protein nanopore to readily detect the changes in structure and function of DNA. After Dox insertion, nanopore unzipping time of DNA was elevated 10-fold while the blocking current decreased, demonstrating the higher affinity of the DNA–Dox complex (formation constant K f = 3.09 × 105 M–1). Continuous rapid nanopore detection in real time displayed that Dox intercalation in DNA is a two-state dynamic process: fast binding and slow conformational adaption. The nanopore platform provides a powerful tool for studying small molecule–biomacromolecule interactions and paves the way for novel applications aimed at drug screening and functional analysis.
doi_str_mv 10.1021/ac503926g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692356845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660395496</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-a8e76cfabe22e74a503a35b2960b9c117a91d521dbba7bbcca57f68a6cb02a6b3</originalsourceid><addsrcrecordid>eNqN0b1OwzAUBWALgWgpDLwAioSQYAhcO7GTjFXLT6VSBmCOrl2nCkrjYicS3XgH3pAnwVVLhWBh8vL5XPtcQo4pXFJg9AoVhyhjYrZDupQzCEWasl3SBYAoZAlAhxw49wJAKVCxTzqMx5m_QLtkMMHaLIzVwWNZzyod3ptKq7bSQb_GaulKF5giGE76n-8fQ_NmbCtLVdbBqG60RdWUpnaHZK_AyumjzdkjzzfXT4O7cPxwOxr0xyHGkDUhpjoRqkCpGdNJjP7NGHHJMgEyU5QmmNEpZ3QqJSZSKoU8KUSKQklgKGTUI-fr3IU1r612TT4vndJVhbU2rcupyFjERRrzf1DhG_MtCE9Pf9EX01r_-ZWK4ySJmKBeXayVssY5q4t8Ycs52mVOIV8tId8uwduTTWIr53q6ld-te3C2Bqjcj2l_gr4Abx6NHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1644773261</pqid></control><display><type>article</type><title>Nanopore Single-Molecule Analysis of DNA–Doxorubicin Interactions</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Yao, Fujun ; Duan, Jing ; Wang, Ying ; Zhang, Yue ; Guo, Yanli ; Guo, Huilin ; Kang, Xiaofeng</creator><creatorcontrib>Yao, Fujun ; Duan, Jing ; Wang, Ying ; Zhang, Yue ; Guo, Yanli ; Guo, Huilin ; Kang, Xiaofeng</creatorcontrib><description>Anticancer activity and toxicity of doxorubicin (Dox) are associated with its DNA intercalation. To understand the role in gene regulation and the drug mechanism, it is a challenge to detect the DNA–Dox interaction at the single-molecule level without the use of laborious, time-consuming labeling assays and an error-prone amplification method. Here, we utilized the simplest and cheapest, yet highly sensitive, single-molecule nanopore technology to investigate the DNA–Dox interaction and explore in situ the intercalative reaction kinetics. Distinctive electronic signal patterns between DNA and the DNA–Dox complex allow protein nanopore to readily detect the changes in structure and function of DNA. After Dox insertion, nanopore unzipping time of DNA was elevated 10-fold while the blocking current decreased, demonstrating the higher affinity of the DNA–Dox complex (formation constant K f = 3.09 × 105 M–1). Continuous rapid nanopore detection in real time displayed that Dox intercalation in DNA is a two-state dynamic process: fast binding and slow conformational adaption. The nanopore platform provides a powerful tool for studying small molecule–biomacromolecule interactions and paves the way for novel applications aimed at drug screening and functional analysis.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac503926g</identifier><identifier>PMID: 25493921</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding sites ; Biosensing Techniques - methods ; Constants ; Deoxyribonucleic acid ; DNA ; DNA Adducts - chemistry ; DNA Adducts - metabolism ; Doxorubicin - chemistry ; Doxorubicin - metabolism ; Drugs ; Electronics ; Escherichia coli Proteins - chemistry ; Hemolysin Proteins - chemistry ; Humans ; Intercalating Agents - chemistry ; Intercalation ; Kinetics ; Molecules ; Nanopores ; Nanostructure ; Nanotechnology - methods ; Nucleic Acid Conformation ; Proteins ; Toxicity</subject><ispartof>Analytical chemistry (Washington), 2015-01, Vol.87 (1), p.338-342</ispartof><rights>Copyright American Chemical Society Jan 6, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-a8e76cfabe22e74a503a35b2960b9c117a91d521dbba7bbcca57f68a6cb02a6b3</citedby><cites>FETCH-LOGICAL-a409t-a8e76cfabe22e74a503a35b2960b9c117a91d521dbba7bbcca57f68a6cb02a6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac503926g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac503926g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25493921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Fujun</creatorcontrib><creatorcontrib>Duan, Jing</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Guo, Yanli</creatorcontrib><creatorcontrib>Guo, Huilin</creatorcontrib><creatorcontrib>Kang, Xiaofeng</creatorcontrib><title>Nanopore Single-Molecule Analysis of DNA–Doxorubicin Interactions</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Anticancer activity and toxicity of doxorubicin (Dox) are associated with its DNA intercalation. To understand the role in gene regulation and the drug mechanism, it is a challenge to detect the DNA–Dox interaction at the single-molecule level without the use of laborious, time-consuming labeling assays and an error-prone amplification method. Here, we utilized the simplest and cheapest, yet highly sensitive, single-molecule nanopore technology to investigate the DNA–Dox interaction and explore in situ the intercalative reaction kinetics. Distinctive electronic signal patterns between DNA and the DNA–Dox complex allow protein nanopore to readily detect the changes in structure and function of DNA. After Dox insertion, nanopore unzipping time of DNA was elevated 10-fold while the blocking current decreased, demonstrating the higher affinity of the DNA–Dox complex (formation constant K f = 3.09 × 105 M–1). Continuous rapid nanopore detection in real time displayed that Dox intercalation in DNA is a two-state dynamic process: fast binding and slow conformational adaption. The nanopore platform provides a powerful tool for studying small molecule–biomacromolecule interactions and paves the way for novel applications aimed at drug screening and functional analysis.</description><subject>Binding sites</subject><subject>Biosensing Techniques - methods</subject><subject>Constants</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Adducts - chemistry</subject><subject>DNA Adducts - metabolism</subject><subject>Doxorubicin - chemistry</subject><subject>Doxorubicin - metabolism</subject><subject>Drugs</subject><subject>Electronics</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Hemolysin Proteins - chemistry</subject><subject>Humans</subject><subject>Intercalating Agents - chemistry</subject><subject>Intercalation</subject><subject>Kinetics</subject><subject>Molecules</subject><subject>Nanopores</subject><subject>Nanostructure</subject><subject>Nanotechnology - methods</subject><subject>Nucleic Acid Conformation</subject><subject>Proteins</subject><subject>Toxicity</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0b1OwzAUBWALgWgpDLwAioSQYAhcO7GTjFXLT6VSBmCOrl2nCkrjYicS3XgH3pAnwVVLhWBh8vL5XPtcQo4pXFJg9AoVhyhjYrZDupQzCEWasl3SBYAoZAlAhxw49wJAKVCxTzqMx5m_QLtkMMHaLIzVwWNZzyod3ptKq7bSQb_GaulKF5giGE76n-8fQ_NmbCtLVdbBqG60RdWUpnaHZK_AyumjzdkjzzfXT4O7cPxwOxr0xyHGkDUhpjoRqkCpGdNJjP7NGHHJMgEyU5QmmNEpZ3QqJSZSKoU8KUSKQklgKGTUI-fr3IU1r612TT4vndJVhbU2rcupyFjERRrzf1DhG_MtCE9Pf9EX01r_-ZWK4ySJmKBeXayVssY5q4t8Ycs52mVOIV8tId8uwduTTWIr53q6ld-te3C2Bqjcj2l_gr4Abx6NHA</recordid><startdate>20150106</startdate><enddate>20150106</enddate><creator>Yao, Fujun</creator><creator>Duan, Jing</creator><creator>Wang, Ying</creator><creator>Zhang, Yue</creator><creator>Guo, Yanli</creator><creator>Guo, Huilin</creator><creator>Kang, Xiaofeng</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20150106</creationdate><title>Nanopore Single-Molecule Analysis of DNA–Doxorubicin Interactions</title><author>Yao, Fujun ; Duan, Jing ; Wang, Ying ; Zhang, Yue ; Guo, Yanli ; Guo, Huilin ; Kang, Xiaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-a8e76cfabe22e74a503a35b2960b9c117a91d521dbba7bbcca57f68a6cb02a6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Binding sites</topic><topic>Biosensing Techniques - methods</topic><topic>Constants</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Adducts - chemistry</topic><topic>DNA Adducts - metabolism</topic><topic>Doxorubicin - chemistry</topic><topic>Doxorubicin - metabolism</topic><topic>Drugs</topic><topic>Electronics</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Hemolysin Proteins - chemistry</topic><topic>Humans</topic><topic>Intercalating Agents - chemistry</topic><topic>Intercalation</topic><topic>Kinetics</topic><topic>Molecules</topic><topic>Nanopores</topic><topic>Nanostructure</topic><topic>Nanotechnology - methods</topic><topic>Nucleic Acid Conformation</topic><topic>Proteins</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Fujun</creatorcontrib><creatorcontrib>Duan, Jing</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Guo, Yanli</creatorcontrib><creatorcontrib>Guo, Huilin</creatorcontrib><creatorcontrib>Kang, Xiaofeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Fujun</au><au>Duan, Jing</au><au>Wang, Ying</au><au>Zhang, Yue</au><au>Guo, Yanli</au><au>Guo, Huilin</au><au>Kang, Xiaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanopore Single-Molecule Analysis of DNA–Doxorubicin Interactions</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2015-01-06</date><risdate>2015</risdate><volume>87</volume><issue>1</issue><spage>338</spage><epage>342</epage><pages>338-342</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Anticancer activity and toxicity of doxorubicin (Dox) are associated with its DNA intercalation. To understand the role in gene regulation and the drug mechanism, it is a challenge to detect the DNA–Dox interaction at the single-molecule level without the use of laborious, time-consuming labeling assays and an error-prone amplification method. Here, we utilized the simplest and cheapest, yet highly sensitive, single-molecule nanopore technology to investigate the DNA–Dox interaction and explore in situ the intercalative reaction kinetics. Distinctive electronic signal patterns between DNA and the DNA–Dox complex allow protein nanopore to readily detect the changes in structure and function of DNA. After Dox insertion, nanopore unzipping time of DNA was elevated 10-fold while the blocking current decreased, demonstrating the higher affinity of the DNA–Dox complex (formation constant K f = 3.09 × 105 M–1). Continuous rapid nanopore detection in real time displayed that Dox intercalation in DNA is a two-state dynamic process: fast binding and slow conformational adaption. The nanopore platform provides a powerful tool for studying small molecule–biomacromolecule interactions and paves the way for novel applications aimed at drug screening and functional analysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25493921</pmid><doi>10.1021/ac503926g</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2015-01, Vol.87 (1), p.338-342
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1692356845
source MEDLINE; American Chemical Society Journals
subjects Binding sites
Biosensing Techniques - methods
Constants
Deoxyribonucleic acid
DNA
DNA Adducts - chemistry
DNA Adducts - metabolism
Doxorubicin - chemistry
Doxorubicin - metabolism
Drugs
Electronics
Escherichia coli Proteins - chemistry
Hemolysin Proteins - chemistry
Humans
Intercalating Agents - chemistry
Intercalation
Kinetics
Molecules
Nanopores
Nanostructure
Nanotechnology - methods
Nucleic Acid Conformation
Proteins
Toxicity
title Nanopore Single-Molecule Analysis of DNA–Doxorubicin Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanopore%20Single-Molecule%20Analysis%20of%20DNA%E2%80%93Doxorubicin%20Interactions&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Yao,%20Fujun&rft.date=2015-01-06&rft.volume=87&rft.issue=1&rft.spage=338&rft.epage=342&rft.pages=338-342&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac503926g&rft_dat=%3Cproquest_cross%3E1660395496%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1644773261&rft_id=info:pmid/25493921&rfr_iscdi=true