Structural Approach To Design Sensor Networks for Fault Diagnosis

Key faults significantly affect the normal operation of the process originating risk conditions. These failures should be identified even in the presence of missing measurements or outliers. In this work a new strategy to design sensor networks, which are able to resolve a set of key faults when sen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2013-12, Vol.52 (50), p.17941-17952
Hauptverfasser: Rodriguez, Leandro P. F, Cedeño, Marco V, Sánchez, Mabel C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17952
container_issue 50
container_start_page 17941
container_title Industrial & engineering chemistry research
container_volume 52
creator Rodriguez, Leandro P. F
Cedeño, Marco V
Sánchez, Mabel C
description Key faults significantly affect the normal operation of the process originating risk conditions. These failures should be identified even in the presence of missing measurements or outliers. In this work a new strategy to design sensor networks, which are able to resolve a set of key faults when sensors fail, is presented. The procedure deals with failure isolation using the Fault Resolution Degree concept. This is incorporated as a constraint of the minimum-cost design formulation, and the resulting optimization problem is solved using MILP codes. The strategy only uses low uncertainty data that are readily available at the process design stage. Application results of the methodology to case studies extracted from the literature are presented and compared with those provided by other existing techniques.
doi_str_mv 10.1021/ie403199z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692354889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692354889</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-fdf854825decdc13bbf109ac4f9332f98a9483ee356a412d71d6627089ced78e3</originalsourceid><addsrcrecordid>eNpt0EtLAzEQB_AgCtbqwW-Qi6CH1Ty3ybH0oULRQ-t5SbOTunW7qZldRD-9KxVPnoaBH_P4E3LJ2S1ngt9VoJjk1n4dkQHXgmWaKX1MBswYk2lj9Ck5Q9wyxrRWakDGyzZ1vu2Sq-l4v0_R-Ve6inQKWG0auoQGY6JP0H7E9IY09M3cdXVLp5XbNBErPCcnwdUIF791SF7ms9XkIVs83z9OxovMyVy1WSiD0coIXYIvPZfrdeDMOq-ClVIEa5xVRgJInTvFRTniZZ6LETPWQzkyIIfk-jC3P_K9A2yLXYUe6to1EDsseG6F7DcY29ObA_UpIiYIxT5VO5c-C86Kn5iKv5h6e3WwzmOxjV1q-if-cd9gdGYu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692354889</pqid></control><display><type>article</type><title>Structural Approach To Design Sensor Networks for Fault Diagnosis</title><source>ACS Publications</source><creator>Rodriguez, Leandro P. F ; Cedeño, Marco V ; Sánchez, Mabel C</creator><creatorcontrib>Rodriguez, Leandro P. F ; Cedeño, Marco V ; Sánchez, Mabel C</creatorcontrib><description>Key faults significantly affect the normal operation of the process originating risk conditions. These failures should be identified even in the presence of missing measurements or outliers. In this work a new strategy to design sensor networks, which are able to resolve a set of key faults when sensors fail, is presented. The procedure deals with failure isolation using the Fault Resolution Degree concept. This is incorporated as a constraint of the minimum-cost design formulation, and the resulting optimization problem is solved using MILP codes. The strategy only uses low uncertainty data that are readily available at the process design stage. Application results of the methodology to case studies extracted from the literature are presented and compared with those provided by other existing techniques.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie403199z</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Failure ; Faults ; Industrial engineering ; Networks ; Optimization ; Sensors ; Strategy ; Uncertainty</subject><ispartof>Industrial &amp; engineering chemistry research, 2013-12, Vol.52 (50), p.17941-17952</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-fdf854825decdc13bbf109ac4f9332f98a9483ee356a412d71d6627089ced78e3</citedby><cites>FETCH-LOGICAL-a364t-fdf854825decdc13bbf109ac4f9332f98a9483ee356a412d71d6627089ced78e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie403199z$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie403199z$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Rodriguez, Leandro P. F</creatorcontrib><creatorcontrib>Cedeño, Marco V</creatorcontrib><creatorcontrib>Sánchez, Mabel C</creatorcontrib><title>Structural Approach To Design Sensor Networks for Fault Diagnosis</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Key faults significantly affect the normal operation of the process originating risk conditions. These failures should be identified even in the presence of missing measurements or outliers. In this work a new strategy to design sensor networks, which are able to resolve a set of key faults when sensors fail, is presented. The procedure deals with failure isolation using the Fault Resolution Degree concept. This is incorporated as a constraint of the minimum-cost design formulation, and the resulting optimization problem is solved using MILP codes. The strategy only uses low uncertainty data that are readily available at the process design stage. Application results of the methodology to case studies extracted from the literature are presented and compared with those provided by other existing techniques.</description><subject>Failure</subject><subject>Faults</subject><subject>Industrial engineering</subject><subject>Networks</subject><subject>Optimization</subject><subject>Sensors</subject><subject>Strategy</subject><subject>Uncertainty</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpt0EtLAzEQB_AgCtbqwW-Qi6CH1Ty3ybH0oULRQ-t5SbOTunW7qZldRD-9KxVPnoaBH_P4E3LJ2S1ngt9VoJjk1n4dkQHXgmWaKX1MBswYk2lj9Ck5Q9wyxrRWakDGyzZ1vu2Sq-l4v0_R-Ve6inQKWG0auoQGY6JP0H7E9IY09M3cdXVLp5XbNBErPCcnwdUIF791SF7ms9XkIVs83z9OxovMyVy1WSiD0coIXYIvPZfrdeDMOq-ClVIEa5xVRgJInTvFRTniZZ6LETPWQzkyIIfk-jC3P_K9A2yLXYUe6to1EDsseG6F7DcY29ObA_UpIiYIxT5VO5c-C86Kn5iKv5h6e3WwzmOxjV1q-if-cd9gdGYu</recordid><startdate>20131218</startdate><enddate>20131218</enddate><creator>Rodriguez, Leandro P. F</creator><creator>Cedeño, Marco V</creator><creator>Sánchez, Mabel C</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20131218</creationdate><title>Structural Approach To Design Sensor Networks for Fault Diagnosis</title><author>Rodriguez, Leandro P. F ; Cedeño, Marco V ; Sánchez, Mabel C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-fdf854825decdc13bbf109ac4f9332f98a9483ee356a412d71d6627089ced78e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Failure</topic><topic>Faults</topic><topic>Industrial engineering</topic><topic>Networks</topic><topic>Optimization</topic><topic>Sensors</topic><topic>Strategy</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez, Leandro P. F</creatorcontrib><creatorcontrib>Cedeño, Marco V</creatorcontrib><creatorcontrib>Sánchez, Mabel C</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez, Leandro P. F</au><au>Cedeño, Marco V</au><au>Sánchez, Mabel C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Approach To Design Sensor Networks for Fault Diagnosis</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2013-12-18</date><risdate>2013</risdate><volume>52</volume><issue>50</issue><spage>17941</spage><epage>17952</epage><pages>17941-17952</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Key faults significantly affect the normal operation of the process originating risk conditions. These failures should be identified even in the presence of missing measurements or outliers. In this work a new strategy to design sensor networks, which are able to resolve a set of key faults when sensors fail, is presented. The procedure deals with failure isolation using the Fault Resolution Degree concept. This is incorporated as a constraint of the minimum-cost design formulation, and the resulting optimization problem is solved using MILP codes. The strategy only uses low uncertainty data that are readily available at the process design stage. Application results of the methodology to case studies extracted from the literature are presented and compared with those provided by other existing techniques.</abstract><pub>American Chemical Society</pub><doi>10.1021/ie403199z</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2013-12, Vol.52 (50), p.17941-17952
issn 0888-5885
1520-5045
language eng
recordid cdi_proquest_miscellaneous_1692354889
source ACS Publications
subjects Failure
Faults
Industrial engineering
Networks
Optimization
Sensors
Strategy
Uncertainty
title Structural Approach To Design Sensor Networks for Fault Diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A41%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Approach%20To%20Design%20Sensor%20Networks%20for%20Fault%20Diagnosis&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Rodriguez,%20Leandro%20P.%20F&rft.date=2013-12-18&rft.volume=52&rft.issue=50&rft.spage=17941&rft.epage=17952&rft.pages=17941-17952&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/ie403199z&rft_dat=%3Cproquest_cross%3E1692354889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692354889&rft_id=info:pmid/&rfr_iscdi=true