Structural Approach To Design Sensor Networks for Fault Diagnosis
Key faults significantly affect the normal operation of the process originating risk conditions. These failures should be identified even in the presence of missing measurements or outliers. In this work a new strategy to design sensor networks, which are able to resolve a set of key faults when sen...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2013-12, Vol.52 (50), p.17941-17952 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17952 |
---|---|
container_issue | 50 |
container_start_page | 17941 |
container_title | Industrial & engineering chemistry research |
container_volume | 52 |
creator | Rodriguez, Leandro P. F Cedeño, Marco V Sánchez, Mabel C |
description | Key faults significantly affect the normal operation of the process originating risk conditions. These failures should be identified even in the presence of missing measurements or outliers. In this work a new strategy to design sensor networks, which are able to resolve a set of key faults when sensors fail, is presented. The procedure deals with failure isolation using the Fault Resolution Degree concept. This is incorporated as a constraint of the minimum-cost design formulation, and the resulting optimization problem is solved using MILP codes. The strategy only uses low uncertainty data that are readily available at the process design stage. Application results of the methodology to case studies extracted from the literature are presented and compared with those provided by other existing techniques. |
doi_str_mv | 10.1021/ie403199z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692354889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692354889</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-fdf854825decdc13bbf109ac4f9332f98a9483ee356a412d71d6627089ced78e3</originalsourceid><addsrcrecordid>eNpt0EtLAzEQB_AgCtbqwW-Qi6CH1Ty3ybH0oULRQ-t5SbOTunW7qZldRD-9KxVPnoaBH_P4E3LJ2S1ngt9VoJjk1n4dkQHXgmWaKX1MBswYk2lj9Ck5Q9wyxrRWakDGyzZ1vu2Sq-l4v0_R-Ve6inQKWG0auoQGY6JP0H7E9IY09M3cdXVLp5XbNBErPCcnwdUIF791SF7ms9XkIVs83z9OxovMyVy1WSiD0coIXYIvPZfrdeDMOq-ClVIEa5xVRgJInTvFRTniZZ6LETPWQzkyIIfk-jC3P_K9A2yLXYUe6to1EDsseG6F7DcY29ObA_UpIiYIxT5VO5c-C86Kn5iKv5h6e3WwzmOxjV1q-if-cd9gdGYu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692354889</pqid></control><display><type>article</type><title>Structural Approach To Design Sensor Networks for Fault Diagnosis</title><source>ACS Publications</source><creator>Rodriguez, Leandro P. F ; Cedeño, Marco V ; Sánchez, Mabel C</creator><creatorcontrib>Rodriguez, Leandro P. F ; Cedeño, Marco V ; Sánchez, Mabel C</creatorcontrib><description>Key faults significantly affect the normal operation of the process originating risk conditions. These failures should be identified even in the presence of missing measurements or outliers. In this work a new strategy to design sensor networks, which are able to resolve a set of key faults when sensors fail, is presented. The procedure deals with failure isolation using the Fault Resolution Degree concept. This is incorporated as a constraint of the minimum-cost design formulation, and the resulting optimization problem is solved using MILP codes. The strategy only uses low uncertainty data that are readily available at the process design stage. Application results of the methodology to case studies extracted from the literature are presented and compared with those provided by other existing techniques.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie403199z</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Failure ; Faults ; Industrial engineering ; Networks ; Optimization ; Sensors ; Strategy ; Uncertainty</subject><ispartof>Industrial & engineering chemistry research, 2013-12, Vol.52 (50), p.17941-17952</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-fdf854825decdc13bbf109ac4f9332f98a9483ee356a412d71d6627089ced78e3</citedby><cites>FETCH-LOGICAL-a364t-fdf854825decdc13bbf109ac4f9332f98a9483ee356a412d71d6627089ced78e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie403199z$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie403199z$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Rodriguez, Leandro P. F</creatorcontrib><creatorcontrib>Cedeño, Marco V</creatorcontrib><creatorcontrib>Sánchez, Mabel C</creatorcontrib><title>Structural Approach To Design Sensor Networks for Fault Diagnosis</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Key faults significantly affect the normal operation of the process originating risk conditions. These failures should be identified even in the presence of missing measurements or outliers. In this work a new strategy to design sensor networks, which are able to resolve a set of key faults when sensors fail, is presented. The procedure deals with failure isolation using the Fault Resolution Degree concept. This is incorporated as a constraint of the minimum-cost design formulation, and the resulting optimization problem is solved using MILP codes. The strategy only uses low uncertainty data that are readily available at the process design stage. Application results of the methodology to case studies extracted from the literature are presented and compared with those provided by other existing techniques.</description><subject>Failure</subject><subject>Faults</subject><subject>Industrial engineering</subject><subject>Networks</subject><subject>Optimization</subject><subject>Sensors</subject><subject>Strategy</subject><subject>Uncertainty</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpt0EtLAzEQB_AgCtbqwW-Qi6CH1Ty3ybH0oULRQ-t5SbOTunW7qZldRD-9KxVPnoaBH_P4E3LJ2S1ngt9VoJjk1n4dkQHXgmWaKX1MBswYk2lj9Ck5Q9wyxrRWakDGyzZ1vu2Sq-l4v0_R-Ve6inQKWG0auoQGY6JP0H7E9IY09M3cdXVLp5XbNBErPCcnwdUIF791SF7ms9XkIVs83z9OxovMyVy1WSiD0coIXYIvPZfrdeDMOq-ClVIEa5xVRgJInTvFRTniZZ6LETPWQzkyIIfk-jC3P_K9A2yLXYUe6to1EDsseG6F7DcY29ObA_UpIiYIxT5VO5c-C86Kn5iKv5h6e3WwzmOxjV1q-if-cd9gdGYu</recordid><startdate>20131218</startdate><enddate>20131218</enddate><creator>Rodriguez, Leandro P. F</creator><creator>Cedeño, Marco V</creator><creator>Sánchez, Mabel C</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20131218</creationdate><title>Structural Approach To Design Sensor Networks for Fault Diagnosis</title><author>Rodriguez, Leandro P. F ; Cedeño, Marco V ; Sánchez, Mabel C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-fdf854825decdc13bbf109ac4f9332f98a9483ee356a412d71d6627089ced78e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Failure</topic><topic>Faults</topic><topic>Industrial engineering</topic><topic>Networks</topic><topic>Optimization</topic><topic>Sensors</topic><topic>Strategy</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez, Leandro P. F</creatorcontrib><creatorcontrib>Cedeño, Marco V</creatorcontrib><creatorcontrib>Sánchez, Mabel C</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez, Leandro P. F</au><au>Cedeño, Marco V</au><au>Sánchez, Mabel C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Approach To Design Sensor Networks for Fault Diagnosis</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2013-12-18</date><risdate>2013</risdate><volume>52</volume><issue>50</issue><spage>17941</spage><epage>17952</epage><pages>17941-17952</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Key faults significantly affect the normal operation of the process originating risk conditions. These failures should be identified even in the presence of missing measurements or outliers. In this work a new strategy to design sensor networks, which are able to resolve a set of key faults when sensors fail, is presented. The procedure deals with failure isolation using the Fault Resolution Degree concept. This is incorporated as a constraint of the minimum-cost design formulation, and the resulting optimization problem is solved using MILP codes. The strategy only uses low uncertainty data that are readily available at the process design stage. Application results of the methodology to case studies extracted from the literature are presented and compared with those provided by other existing techniques.</abstract><pub>American Chemical Society</pub><doi>10.1021/ie403199z</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2013-12, Vol.52 (50), p.17941-17952 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692354889 |
source | ACS Publications |
subjects | Failure Faults Industrial engineering Networks Optimization Sensors Strategy Uncertainty |
title | Structural Approach To Design Sensor Networks for Fault Diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A41%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Approach%20To%20Design%20Sensor%20Networks%20for%20Fault%20Diagnosis&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Rodriguez,%20Leandro%20P.%20F&rft.date=2013-12-18&rft.volume=52&rft.issue=50&rft.spage=17941&rft.epage=17952&rft.pages=17941-17952&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/ie403199z&rft_dat=%3Cproquest_cross%3E1692354889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692354889&rft_id=info:pmid/&rfr_iscdi=true |