Sintering behaviour of porous ceramic kaolin–corundum composites: Phase evolution and densification
[Display omitted] ► We set out to design controlled mullite–corundum matrixes with appropriate physicochemical properties. ► Corundum from calcined bauxite, constituted by hard particle inclusions acts in the matrix composites as second-phase. ► Main features: the increasing of softening point, the...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2011, Vol.528 (29), p.8311-8318 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8318 |
---|---|
container_issue | 29 |
container_start_page | 8311 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 528 |
creator | Njiomou Djangang, Chantale Kamseu, Elie Kor Ndikontar, Maurice Lecomte Nana, Gisèle Laure Soro, Julien Chinje Melo, Uphie Elimbi, Antoine Blanchart, Philippe Njopwouo, Daniel |
description | [Display omitted]
► We set out to design controlled mullite–corundum matrixes with appropriate physicochemical properties. ► Corundum from calcined bauxite, constituted by hard particle inclusions acts in the matrix composites as second-phase. ► Main features: the increasing of softening point, the absence of vitrification in the temperature range of refractory composites in service and the achievement of a good thermal stability. ► Into the refractory matrix, the such reinforcing second-phase strongly improve the final mechanical properties by deflecting the cracks at the grain boundaries.
Kaolinite–corundum (derived from bauxite) associations were assessed as candidate matrices in the field of porous ceramics composites. Particles of corundum were expected to behave as non reactive second phase, deflecting the matrix cracks and increasing the toughness. Porosity and densification were monitored by developing coarse grains (67
wt.% of grains
56
wt.%), the secondary expansion ( |
doi_str_mv | 10.1016/j.msea.2011.07.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692354066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509311007714</els_id><sourcerecordid>1010893633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-e66695f18d89c6bdcda57c804c6971d2384e8146c42da62b36d1683664243dac3</originalsourceid><addsrcrecordid>eNqN0c2KFDEQB_BGFBxXX8BTLoKX7q100pVu8SKLHwsLCrt7Dpmk2s3YnYxJ94A338E33Ccxwywe1VOg-FUVqX9VveTQcOB4vmvmTKZpgfMGVAOAj6oN75Wo5SDwcbWBoeV1B4N4Wj3LeQcAXEK3qejah4WSD1_Zlu7Mwcc1sTiyfUxxzcxSMrO37JuJkw_3P3_ZmNbg1pnZOO9j9gvlN-zLncnE6BCndfExMBMccxSyH701x8rz6slopkwvHt6z6vbD-5uLT_XV54-XF--uaivbYakJEYdu5L3rB4tbZ53plO1BWhwUd63oJfVcYtHOYLsV6Dj2AlG2UjhjxVn1-jR3n-L3lfKiZ58tTZMJVL6jOQ6t6CQg_gdVvFih4N8UOPTlzEIU2p6oTTHnRKPeJz-b9KOgo0O908ek9DEpDUqXpErTq4f5JlszjckE6_OfzlYqkKhUcW9PjsoJD56SztZTsOR8IrtoF_3f1vwGziiqrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010893633</pqid></control><display><type>article</type><title>Sintering behaviour of porous ceramic kaolin–corundum composites: Phase evolution and densification</title><source>Elsevier ScienceDirect Journals</source><creator>Njiomou Djangang, Chantale ; Kamseu, Elie ; Kor Ndikontar, Maurice ; Lecomte Nana, Gisèle Laure ; Soro, Julien ; Chinje Melo, Uphie ; Elimbi, Antoine ; Blanchart, Philippe ; Njopwouo, Daniel</creator><creatorcontrib>Njiomou Djangang, Chantale ; Kamseu, Elie ; Kor Ndikontar, Maurice ; Lecomte Nana, Gisèle Laure ; Soro, Julien ; Chinje Melo, Uphie ; Elimbi, Antoine ; Blanchart, Philippe ; Njopwouo, Daniel</creatorcontrib><description>[Display omitted]
► We set out to design controlled mullite–corundum matrixes with appropriate physicochemical properties. ► Corundum from calcined bauxite, constituted by hard particle inclusions acts in the matrix composites as second-phase. ► Main features: the increasing of softening point, the absence of vitrification in the temperature range of refractory composites in service and the achievement of a good thermal stability. ► Into the refractory matrix, the such reinforcing second-phase strongly improve the final mechanical properties by deflecting the cracks at the grain boundaries.
Kaolinite–corundum (derived from bauxite) associations were assessed as candidate matrices in the field of porous ceramics composites. Particles of corundum were expected to behave as non reactive second phase, deflecting the matrix cracks and increasing the toughness. Porosity and densification were monitored by developing coarse grains (67
wt.% of grains <1
mm and 33
wt.% of grains between 1 and 4
mm) of bauxite-based chamotte with corundum as principal phase. The main features resulting from the use of bauxite-based chamotte were the increase of softening point, the absence of vitrification in the temperature range of refractory composites in service and the achievement of a good thermal stability. For temperatures ranging between 1200 and 1300
°C, flint kaolin matrix did not show any reaction with the red corundum grains. Refractory composites elaborated with more than 30% of corundum exhibited typical final characteristics which satisfied ASTM C155 and ISO 1109 standards for refractory materials, namely: the chemical composition (Al
2O
3
>
56
wt.%), the secondary expansion (<0.1%), the total porosity (∼45
vol.%) and the bulk density (1.9
g/cm
3). Such materials are promising low-cost solutions for the production of porous ceramics composites.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2011.07.006</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Ceramics ; Chamotte ; Clay ; Composites ; Condensed matter: structure, mechanical and thermal properties ; Corundum ; Cross-disciplinary physics: materials science; rheology ; Deformation and plasticity (including yield, ductility, and superplasticity) ; Densification ; Exact sciences and technology ; Grains ; Materials science ; Materials synthesis; materials processing ; Mechanical and acoustical properties of condensed matter ; Mechanical properties ; Mechanical properties of solids ; Physics ; Porosity ; Refractories</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2011, Vol.528 (29), p.8311-8318</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-e66695f18d89c6bdcda57c804c6971d2384e8146c42da62b36d1683664243dac3</citedby><cites>FETCH-LOGICAL-c429t-e66695f18d89c6bdcda57c804c6971d2384e8146c42da62b36d1683664243dac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509311007714$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24704677$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Njiomou Djangang, Chantale</creatorcontrib><creatorcontrib>Kamseu, Elie</creatorcontrib><creatorcontrib>Kor Ndikontar, Maurice</creatorcontrib><creatorcontrib>Lecomte Nana, Gisèle Laure</creatorcontrib><creatorcontrib>Soro, Julien</creatorcontrib><creatorcontrib>Chinje Melo, Uphie</creatorcontrib><creatorcontrib>Elimbi, Antoine</creatorcontrib><creatorcontrib>Blanchart, Philippe</creatorcontrib><creatorcontrib>Njopwouo, Daniel</creatorcontrib><title>Sintering behaviour of porous ceramic kaolin–corundum composites: Phase evolution and densification</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>[Display omitted]
► We set out to design controlled mullite–corundum matrixes with appropriate physicochemical properties. ► Corundum from calcined bauxite, constituted by hard particle inclusions acts in the matrix composites as second-phase. ► Main features: the increasing of softening point, the absence of vitrification in the temperature range of refractory composites in service and the achievement of a good thermal stability. ► Into the refractory matrix, the such reinforcing second-phase strongly improve the final mechanical properties by deflecting the cracks at the grain boundaries.
Kaolinite–corundum (derived from bauxite) associations were assessed as candidate matrices in the field of porous ceramics composites. Particles of corundum were expected to behave as non reactive second phase, deflecting the matrix cracks and increasing the toughness. Porosity and densification were monitored by developing coarse grains (67
wt.% of grains <1
mm and 33
wt.% of grains between 1 and 4
mm) of bauxite-based chamotte with corundum as principal phase. The main features resulting from the use of bauxite-based chamotte were the increase of softening point, the absence of vitrification in the temperature range of refractory composites in service and the achievement of a good thermal stability. For temperatures ranging between 1200 and 1300
°C, flint kaolin matrix did not show any reaction with the red corundum grains. Refractory composites elaborated with more than 30% of corundum exhibited typical final characteristics which satisfied ASTM C155 and ISO 1109 standards for refractory materials, namely: the chemical composition (Al
2O
3
>
56
wt.%), the secondary expansion (<0.1%), the total porosity (∼45
vol.%) and the bulk density (1.9
g/cm
3). Such materials are promising low-cost solutions for the production of porous ceramics composites.</description><subject>Ceramics</subject><subject>Chamotte</subject><subject>Clay</subject><subject>Composites</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Corundum</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deformation and plasticity (including yield, ductility, and superplasticity)</subject><subject>Densification</subject><subject>Exact sciences and technology</subject><subject>Grains</subject><subject>Materials science</subject><subject>Materials synthesis; materials processing</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties</subject><subject>Mechanical properties of solids</subject><subject>Physics</subject><subject>Porosity</subject><subject>Refractories</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqN0c2KFDEQB_BGFBxXX8BTLoKX7q100pVu8SKLHwsLCrt7Dpmk2s3YnYxJ94A338E33Ccxwywe1VOg-FUVqX9VveTQcOB4vmvmTKZpgfMGVAOAj6oN75Wo5SDwcbWBoeV1B4N4Wj3LeQcAXEK3qejah4WSD1_Zlu7Mwcc1sTiyfUxxzcxSMrO37JuJkw_3P3_ZmNbg1pnZOO9j9gvlN-zLncnE6BCndfExMBMccxSyH701x8rz6slopkwvHt6z6vbD-5uLT_XV54-XF--uaivbYakJEYdu5L3rB4tbZ53plO1BWhwUd63oJfVcYtHOYLsV6Dj2AlG2UjhjxVn1-jR3n-L3lfKiZ58tTZMJVL6jOQ6t6CQg_gdVvFih4N8UOPTlzEIU2p6oTTHnRKPeJz-b9KOgo0O908ek9DEpDUqXpErTq4f5JlszjckE6_OfzlYqkKhUcW9PjsoJD56SztZTsOR8IrtoF_3f1vwGziiqrA</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Njiomou Djangang, Chantale</creator><creator>Kamseu, Elie</creator><creator>Kor Ndikontar, Maurice</creator><creator>Lecomte Nana, Gisèle Laure</creator><creator>Soro, Julien</creator><creator>Chinje Melo, Uphie</creator><creator>Elimbi, Antoine</creator><creator>Blanchart, Philippe</creator><creator>Njopwouo, Daniel</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2011</creationdate><title>Sintering behaviour of porous ceramic kaolin–corundum composites: Phase evolution and densification</title><author>Njiomou Djangang, Chantale ; Kamseu, Elie ; Kor Ndikontar, Maurice ; Lecomte Nana, Gisèle Laure ; Soro, Julien ; Chinje Melo, Uphie ; Elimbi, Antoine ; Blanchart, Philippe ; Njopwouo, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-e66695f18d89c6bdcda57c804c6971d2384e8146c42da62b36d1683664243dac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Ceramics</topic><topic>Chamotte</topic><topic>Clay</topic><topic>Composites</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Corundum</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deformation and plasticity (including yield, ductility, and superplasticity)</topic><topic>Densification</topic><topic>Exact sciences and technology</topic><topic>Grains</topic><topic>Materials science</topic><topic>Materials synthesis; materials processing</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties</topic><topic>Mechanical properties of solids</topic><topic>Physics</topic><topic>Porosity</topic><topic>Refractories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Njiomou Djangang, Chantale</creatorcontrib><creatorcontrib>Kamseu, Elie</creatorcontrib><creatorcontrib>Kor Ndikontar, Maurice</creatorcontrib><creatorcontrib>Lecomte Nana, Gisèle Laure</creatorcontrib><creatorcontrib>Soro, Julien</creatorcontrib><creatorcontrib>Chinje Melo, Uphie</creatorcontrib><creatorcontrib>Elimbi, Antoine</creatorcontrib><creatorcontrib>Blanchart, Philippe</creatorcontrib><creatorcontrib>Njopwouo, Daniel</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Njiomou Djangang, Chantale</au><au>Kamseu, Elie</au><au>Kor Ndikontar, Maurice</au><au>Lecomte Nana, Gisèle Laure</au><au>Soro, Julien</au><au>Chinje Melo, Uphie</au><au>Elimbi, Antoine</au><au>Blanchart, Philippe</au><au>Njopwouo, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sintering behaviour of porous ceramic kaolin–corundum composites: Phase evolution and densification</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2011</date><risdate>2011</risdate><volume>528</volume><issue>29</issue><spage>8311</spage><epage>8318</epage><pages>8311-8318</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>[Display omitted]
► We set out to design controlled mullite–corundum matrixes with appropriate physicochemical properties. ► Corundum from calcined bauxite, constituted by hard particle inclusions acts in the matrix composites as second-phase. ► Main features: the increasing of softening point, the absence of vitrification in the temperature range of refractory composites in service and the achievement of a good thermal stability. ► Into the refractory matrix, the such reinforcing second-phase strongly improve the final mechanical properties by deflecting the cracks at the grain boundaries.
Kaolinite–corundum (derived from bauxite) associations were assessed as candidate matrices in the field of porous ceramics composites. Particles of corundum were expected to behave as non reactive second phase, deflecting the matrix cracks and increasing the toughness. Porosity and densification were monitored by developing coarse grains (67
wt.% of grains <1
mm and 33
wt.% of grains between 1 and 4
mm) of bauxite-based chamotte with corundum as principal phase. The main features resulting from the use of bauxite-based chamotte were the increase of softening point, the absence of vitrification in the temperature range of refractory composites in service and the achievement of a good thermal stability. For temperatures ranging between 1200 and 1300
°C, flint kaolin matrix did not show any reaction with the red corundum grains. Refractory composites elaborated with more than 30% of corundum exhibited typical final characteristics which satisfied ASTM C155 and ISO 1109 standards for refractory materials, namely: the chemical composition (Al
2O
3
>
56
wt.%), the secondary expansion (<0.1%), the total porosity (∼45
vol.%) and the bulk density (1.9
g/cm
3). Such materials are promising low-cost solutions for the production of porous ceramics composites.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2011.07.006</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2011, Vol.528 (29), p.8311-8318 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692354066 |
source | Elsevier ScienceDirect Journals |
subjects | Ceramics Chamotte Clay Composites Condensed matter: structure, mechanical and thermal properties Corundum Cross-disciplinary physics: materials science rheology Deformation and plasticity (including yield, ductility, and superplasticity) Densification Exact sciences and technology Grains Materials science Materials synthesis materials processing Mechanical and acoustical properties of condensed matter Mechanical properties Mechanical properties of solids Physics Porosity Refractories |
title | Sintering behaviour of porous ceramic kaolin–corundum composites: Phase evolution and densification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A22%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sintering%20behaviour%20of%20porous%20ceramic%20kaolin%E2%80%93corundum%20composites:%20Phase%20evolution%20and%20densification&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Njiomou%20Djangang,%20Chantale&rft.date=2011&rft.volume=528&rft.issue=29&rft.spage=8311&rft.epage=8318&rft.pages=8311-8318&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2011.07.006&rft_dat=%3Cproquest_cross%3E1010893633%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010893633&rft_id=info:pmid/&rft_els_id=S0921509311007714&rfr_iscdi=true |