Natural Flanking Sequences for Peptides Included in a Quantification Concatamer Internal Standard

Quantification by targeted proteomics has largely depended on mass spectrometry and isotope-labeled internal standards. In addition to traditionally used recombinant proteins or synthetic peptides, concatenated peptides (QconCATs) were introduced as a conceptually new source of internal standard. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2015-01, Vol.87 (2), p.1097-1102
Hauptverfasser: Cheung, Crystal S. F, Anderson, Kyle W, Wang, Meiyao, Turko, Illarion V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantification by targeted proteomics has largely depended on mass spectrometry and isotope-labeled internal standards. In addition to traditionally used recombinant proteins or synthetic peptides, concatenated peptides (QconCATs) were introduced as a conceptually new source of internal standard. In the present study, we focused on assessing the length of natural flanking sequences, which surround each peptide included in QconCAT and provide for identical rates of analyte and standard digestion by trypsin. We have expressed, purified, and characterized a set of seven 15N-labeled QconCATs that cover seven tryptic peptides from human clusterin with a length of natural flanking sequences ranging from none (+0) to six amino acid residues (+6) for each tryptic peptide. Individual QconCATs were mixed with recombinant human clusterin at a 1:1 molar ratio and digested, and the actual ratios for each combination of peptide/flanking sequence were measured with a multiple reaction monitoring assay. Data analysis suggested that natural flanking sequences shorter than +6 residues can cause a quantitative error because the random appearance of other amino acid residues in close proximity to trypsin cleavage sites has unpredictable consequences for the digestion rates of QconCATs.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac503697j