Influence of autocatalytic coating bath parameters on the formation of copper over surface treated boron carbide particles
The functional and structural applications of boron carbide (B4C) for neutron shielding and engineering sectors are limited due to brittleness and low temperature oxidation; however its use is enhanced by the synthesis of its composites. During composite synthesis, the interfacial compatibility of b...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2013-01, Vol.214, p.77-85 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | |
container_start_page | 77 |
container_title | Surface & coatings technology |
container_volume | 214 |
creator | Deepa, J.P. Rajan, T.P.D. Pavithran, C. Pai, B.C. |
description | The functional and structural applications of boron carbide (B4C) for neutron shielding and engineering sectors are limited due to brittleness and low temperature oxidation; however its use is enhanced by the synthesis of its composites. During composite synthesis, the interfacial compatibility of boron carbide with the matrices can be improved by the formation of metallic coatings. The present study aims at formation of autocatalytic copper coating over surface treated B4C particles with varying bath parameters and evaluating its influence on coating morphology and uniformity. An effective coating of copper over alkali treated boron carbide was obtained at pH12 and a bath temperature of 30°C. Above pH 12 as well as higher bath temperatures of 50 and 75°C leads to predominant co-deposition of metallic copper clusters within the reaction bath. SEM observations of coated boron carbide particles show the formation of copper clusters in the size range of 200–400nm. The morphology of Cu coating changes from cauliflower-like structure to angular shape with increase in bath temperature and pH. The Debye–Scherrer crystal size calculation shows that copper crystallite size vary from 17 to 25nm.
► Coating morphology and uniformity is greatly affected by bath temperature and pH. ► Alkali treated B4C shows better surface coating at pH12 in ambient bath condition. ► Co-deposition of metallic copper predominates at higher bath pH and temperature. ► Copper oxide formation observed at higher bath pH and temperature. ► Crystallite size of Cu coating on B4C particles is in the range of 17–25nm. |
doi_str_mv | 10.1016/j.surfcoat.2012.11.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692351254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897212011231</els_id><sourcerecordid>1323256211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-266ffe363e6beff568295f79a5eac294c02887c52fafd1b36ca57aba4b29a9193</originalsourceid><addsrcrecordid>eNqFkcFq3TAQRU1poa9pfqFoU-jGrka2ZGvXEtomEOimXYuxPGr08LNcSQ6kXx-Zl2abjYTg3DODblV9AN4AB_X52KQtOhswN4KDaAAazuWr6gBDr-u27frX1YEL2deD7sXb6l1KR8459Lo7VP9uFjdvtFhiwTHccrCYcX7I3rJd6Zc_bMR8x1aMeKJMMbGwsHxHzIV4KkB5laQN60qRhfty7OtgEeZImGliY4gFshhHP9EuKvKZ0vvqjcM50eXTfVH9_v7t19V1ffvzx83V19vadnzItVDKOWpVS2ok56QahJau1ygJrdCd5WIYeiuFQzfB2CqLsscRu1Fo1KDbi-rT2bvG8HejlM3JJ0vzjAuFLRlQWrQShOxeRlvRCqkEQEHVGbUxpBTJmTX6E8YHA9zsvZij-d-L2XsxAKb0UoIfn2Zgsji7iIv16TkteuC8A164L2eOyt_ce4omWb8XNflINpsp-JdGPQKRdqm1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323256211</pqid></control><display><type>article</type><title>Influence of autocatalytic coating bath parameters on the formation of copper over surface treated boron carbide particles</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Deepa, J.P. ; Rajan, T.P.D. ; Pavithran, C. ; Pai, B.C.</creator><creatorcontrib>Deepa, J.P. ; Rajan, T.P.D. ; Pavithran, C. ; Pai, B.C.</creatorcontrib><description>The functional and structural applications of boron carbide (B4C) for neutron shielding and engineering sectors are limited due to brittleness and low temperature oxidation; however its use is enhanced by the synthesis of its composites. During composite synthesis, the interfacial compatibility of boron carbide with the matrices can be improved by the formation of metallic coatings. The present study aims at formation of autocatalytic copper coating over surface treated B4C particles with varying bath parameters and evaluating its influence on coating morphology and uniformity. An effective coating of copper over alkali treated boron carbide was obtained at pH12 and a bath temperature of 30°C. Above pH 12 as well as higher bath temperatures of 50 and 75°C leads to predominant co-deposition of metallic copper clusters within the reaction bath. SEM observations of coated boron carbide particles show the formation of copper clusters in the size range of 200–400nm. The morphology of Cu coating changes from cauliflower-like structure to angular shape with increase in bath temperature and pH. The Debye–Scherrer crystal size calculation shows that copper crystallite size vary from 17 to 25nm.
► Coating morphology and uniformity is greatly affected by bath temperature and pH. ► Alkali treated B4C shows better surface coating at pH12 in ambient bath condition. ► Co-deposition of metallic copper predominates at higher bath pH and temperature. ► Copper oxide formation observed at higher bath pH and temperature. ► Crystallite size of Cu coating on B4C particles is in the range of 17–25nm.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2012.11.005</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; BORON CARBIDE ; Carbide ; CARBIDES ; Clusters ; COATING ; COATINGS ; Copper ; Cross-disciplinary physics: materials science; rheology ; Crystallites ; Exact sciences and technology ; Materials science ; MATHEMATICAL ANALYSIS ; Metals. Metallurgy ; MORPHOLOGY ; PARAMETERS ; Physics ; Production techniques ; Surface properties ; Surface treatment ; Surface treatments</subject><ispartof>Surface & coatings technology, 2013-01, Vol.214, p.77-85</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-266ffe363e6beff568295f79a5eac294c02887c52fafd1b36ca57aba4b29a9193</citedby><cites>FETCH-LOGICAL-c408t-266ffe363e6beff568295f79a5eac294c02887c52fafd1b36ca57aba4b29a9193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2012.11.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27100410$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Deepa, J.P.</creatorcontrib><creatorcontrib>Rajan, T.P.D.</creatorcontrib><creatorcontrib>Pavithran, C.</creatorcontrib><creatorcontrib>Pai, B.C.</creatorcontrib><title>Influence of autocatalytic coating bath parameters on the formation of copper over surface treated boron carbide particles</title><title>Surface & coatings technology</title><description>The functional and structural applications of boron carbide (B4C) for neutron shielding and engineering sectors are limited due to brittleness and low temperature oxidation; however its use is enhanced by the synthesis of its composites. During composite synthesis, the interfacial compatibility of boron carbide with the matrices can be improved by the formation of metallic coatings. The present study aims at formation of autocatalytic copper coating over surface treated B4C particles with varying bath parameters and evaluating its influence on coating morphology and uniformity. An effective coating of copper over alkali treated boron carbide was obtained at pH12 and a bath temperature of 30°C. Above pH 12 as well as higher bath temperatures of 50 and 75°C leads to predominant co-deposition of metallic copper clusters within the reaction bath. SEM observations of coated boron carbide particles show the formation of copper clusters in the size range of 200–400nm. The morphology of Cu coating changes from cauliflower-like structure to angular shape with increase in bath temperature and pH. The Debye–Scherrer crystal size calculation shows that copper crystallite size vary from 17 to 25nm.
► Coating morphology and uniformity is greatly affected by bath temperature and pH. ► Alkali treated B4C shows better surface coating at pH12 in ambient bath condition. ► Co-deposition of metallic copper predominates at higher bath pH and temperature. ► Copper oxide formation observed at higher bath pH and temperature. ► Crystallite size of Cu coating on B4C particles is in the range of 17–25nm.</description><subject>Applied sciences</subject><subject>BORON CARBIDE</subject><subject>Carbide</subject><subject>CARBIDES</subject><subject>Clusters</subject><subject>COATING</subject><subject>COATINGS</subject><subject>Copper</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallites</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>MATHEMATICAL ANALYSIS</subject><subject>Metals. Metallurgy</subject><subject>MORPHOLOGY</subject><subject>PARAMETERS</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Surface properties</subject><subject>Surface treatment</subject><subject>Surface treatments</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkcFq3TAQRU1poa9pfqFoU-jGrka2ZGvXEtomEOimXYuxPGr08LNcSQ6kXx-Zl2abjYTg3DODblV9AN4AB_X52KQtOhswN4KDaAAazuWr6gBDr-u27frX1YEL2deD7sXb6l1KR8459Lo7VP9uFjdvtFhiwTHccrCYcX7I3rJd6Zc_bMR8x1aMeKJMMbGwsHxHzIV4KkB5laQN60qRhfty7OtgEeZImGliY4gFshhHP9EuKvKZ0vvqjcM50eXTfVH9_v7t19V1ffvzx83V19vadnzItVDKOWpVS2ok56QahJau1ygJrdCd5WIYeiuFQzfB2CqLsscRu1Fo1KDbi-rT2bvG8HejlM3JJ0vzjAuFLRlQWrQShOxeRlvRCqkEQEHVGbUxpBTJmTX6E8YHA9zsvZij-d-L2XsxAKb0UoIfn2Zgsji7iIv16TkteuC8A164L2eOyt_ce4omWb8XNflINpsp-JdGPQKRdqm1</recordid><startdate>20130115</startdate><enddate>20130115</enddate><creator>Deepa, J.P.</creator><creator>Rajan, T.P.D.</creator><creator>Pavithran, C.</creator><creator>Pai, B.C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20130115</creationdate><title>Influence of autocatalytic coating bath parameters on the formation of copper over surface treated boron carbide particles</title><author>Deepa, J.P. ; Rajan, T.P.D. ; Pavithran, C. ; Pai, B.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-266ffe363e6beff568295f79a5eac294c02887c52fafd1b36ca57aba4b29a9193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>BORON CARBIDE</topic><topic>Carbide</topic><topic>CARBIDES</topic><topic>Clusters</topic><topic>COATING</topic><topic>COATINGS</topic><topic>Copper</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallites</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>MATHEMATICAL ANALYSIS</topic><topic>Metals. Metallurgy</topic><topic>MORPHOLOGY</topic><topic>PARAMETERS</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Surface properties</topic><topic>Surface treatment</topic><topic>Surface treatments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deepa, J.P.</creatorcontrib><creatorcontrib>Rajan, T.P.D.</creatorcontrib><creatorcontrib>Pavithran, C.</creatorcontrib><creatorcontrib>Pai, B.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deepa, J.P.</au><au>Rajan, T.P.D.</au><au>Pavithran, C.</au><au>Pai, B.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of autocatalytic coating bath parameters on the formation of copper over surface treated boron carbide particles</atitle><jtitle>Surface & coatings technology</jtitle><date>2013-01-15</date><risdate>2013</risdate><volume>214</volume><spage>77</spage><epage>85</epage><pages>77-85</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>The functional and structural applications of boron carbide (B4C) for neutron shielding and engineering sectors are limited due to brittleness and low temperature oxidation; however its use is enhanced by the synthesis of its composites. During composite synthesis, the interfacial compatibility of boron carbide with the matrices can be improved by the formation of metallic coatings. The present study aims at formation of autocatalytic copper coating over surface treated B4C particles with varying bath parameters and evaluating its influence on coating morphology and uniformity. An effective coating of copper over alkali treated boron carbide was obtained at pH12 and a bath temperature of 30°C. Above pH 12 as well as higher bath temperatures of 50 and 75°C leads to predominant co-deposition of metallic copper clusters within the reaction bath. SEM observations of coated boron carbide particles show the formation of copper clusters in the size range of 200–400nm. The morphology of Cu coating changes from cauliflower-like structure to angular shape with increase in bath temperature and pH. The Debye–Scherrer crystal size calculation shows that copper crystallite size vary from 17 to 25nm.
► Coating morphology and uniformity is greatly affected by bath temperature and pH. ► Alkali treated B4C shows better surface coating at pH12 in ambient bath condition. ► Co-deposition of metallic copper predominates at higher bath pH and temperature. ► Copper oxide formation observed at higher bath pH and temperature. ► Crystallite size of Cu coating on B4C particles is in the range of 17–25nm.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2012.11.005</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2013-01, Vol.214, p.77-85 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692351254 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences BORON CARBIDE Carbide CARBIDES Clusters COATING COATINGS Copper Cross-disciplinary physics: materials science rheology Crystallites Exact sciences and technology Materials science MATHEMATICAL ANALYSIS Metals. Metallurgy MORPHOLOGY PARAMETERS Physics Production techniques Surface properties Surface treatment Surface treatments |
title | Influence of autocatalytic coating bath parameters on the formation of copper over surface treated boron carbide particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20autocatalytic%20coating%20bath%20parameters%20on%20the%20formation%20of%20copper%20over%20surface%20treated%20boron%20carbide%20particles&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Deepa,%20J.P.&rft.date=2013-01-15&rft.volume=214&rft.spage=77&rft.epage=85&rft.pages=77-85&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2012.11.005&rft_dat=%3Cproquest_cross%3E1323256211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323256211&rft_id=info:pmid/&rft_els_id=S0257897212011231&rfr_iscdi=true |