Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets
Layer‐by‐layer (LbL) assembly has emerged as the leading non‐vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal a...
Gespeichert in:
Veröffentlicht in: | Macromolecular rapid communications. 2015-05, Vol.36 (10), p.866-879 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 879 |
---|---|
container_issue | 10 |
container_start_page | 866 |
container_title | Macromolecular rapid communications. |
container_volume | 36 |
creator | Priolo, Morgan A. Holder, Kevin M. Guin, Tyler Grunlan, Jaime C. |
description | Layer‐by‐layer (LbL) assembly has emerged as the leading non‐vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide‐based barrier films. This Feature Article is a mini‐review of LbL‐based multilayer thin films with a ‘nanobrick wall’ microstructure comprising polymeric mortar and nanoplatelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water‐based thin films exhibit oxygen transmission rates below 5 × 10‐3 cm3 m‐2 day‐1 atm‐1 and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake‐filled polymers are briefly reviewed.
This Feature Article reviews multilayer thin films, deposited layer‐by‐layer to produce a ‘nanobrick wall’ structure that imparts high gas barrier to permeable polymer substrates. These transparent, water‐based thin films exhibit a lower permeability than any other barrier thin film material. |
doi_str_mv | 10.1002/marc.201500055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692349580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1681915925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6205-25e3daa834711b2d44dc99d2786cfb29ff798cf2c9ec2c150ea6946851e4ef6c3</originalsourceid><addsrcrecordid>eNqNkc1v1DAQxS0EoqVw5YgsceGSxR5_JD5uV3RBWqBUhR4tx5mIFCdp7Wwh_z1etqwQFzjNaPR7T_P0CHnO2YIzBq97F_0CGFeMMaUekGOugBfCQPkw7wyg4ELoI_IkpeuMVJLBY3IEqspiqY6JvUCPw0SXzZ0bPCbaDXTtEj11MXYY6eXXfDjrQp_oXefoxs0Yi3oufi10mRL2dZjp2NLzMcw9xkTd0NDz4CYMOKWn5FHrQsJn9_OEfD57c7l6W2w-rt-tlpvCa2CqAIWica4SsuS8hkbKxhvTQFlp39Zg2rY0lW_BG_Tgc1p02khdKY4SW-3FCXm1972J4-0W02T7LnkMwQ04bpPl2oCQJuf-D7TihisDKqMv_0Kvx20ccpAdxUypteSZWuwpH8eUIrb2Jna5mNlyZnct2V1L9tBSFry4t93WPTYH_HctGTB74HsXcP6HnX2_vFj9aV7stV2a8MdB6-I3q0tRKnv1YZ2___KpulIbeyp-AkcZq3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680976641</pqid></control><display><type>article</type><title>Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Priolo, Morgan A. ; Holder, Kevin M. ; Guin, Tyler ; Grunlan, Jaime C.</creator><creatorcontrib>Priolo, Morgan A. ; Holder, Kevin M. ; Guin, Tyler ; Grunlan, Jaime C.</creatorcontrib><description>Layer‐by‐layer (LbL) assembly has emerged as the leading non‐vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide‐based barrier films. This Feature Article is a mini‐review of LbL‐based multilayer thin films with a ‘nanobrick wall’ microstructure comprising polymeric mortar and nanoplatelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water‐based thin films exhibit oxygen transmission rates below 5 × 10‐3 cm3 m‐2 day‐1 atm‐1 and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake‐filled polymers are briefly reviewed.
This Feature Article reviews multilayer thin films, deposited layer‐by‐layer to produce a ‘nanobrick wall’ structure that imparts high gas barrier to permeable polymer substrates. These transparent, water‐based thin films exhibit a lower permeability than any other barrier thin film material.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.201500055</identifier><identifier>PMID: 25800245</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Aluminum Silicates - chemistry ; Assembly ; Barriers ; Blood Platelets - chemistry ; clays ; Deposition ; Diffusion ; Food Packaging - methods ; gas barrier ; Humans ; layer-by-layer assembly ; Multilayers ; Nanostructure ; Nylons - chemistry ; Oxygen - chemistry ; oxygen transmission rate ; Polyethylene - chemistry ; Polyethylene Terephthalates - chemistry ; Polymers ; Polypropylenes - chemistry ; Surface Properties ; Thin films ; Walls ; Water - chemistry</subject><ispartof>Macromolecular rapid communications., 2015-05, Vol.36 (10), p.866-879</ispartof><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6205-25e3daa834711b2d44dc99d2786cfb29ff798cf2c9ec2c150ea6946851e4ef6c3</citedby><cites>FETCH-LOGICAL-c6205-25e3daa834711b2d44dc99d2786cfb29ff798cf2c9ec2c150ea6946851e4ef6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmarc.201500055$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmarc.201500055$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25800245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Priolo, Morgan A.</creatorcontrib><creatorcontrib>Holder, Kevin M.</creatorcontrib><creatorcontrib>Guin, Tyler</creatorcontrib><creatorcontrib>Grunlan, Jaime C.</creatorcontrib><title>Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets</title><title>Macromolecular rapid communications.</title><addtitle>Macromol. Rapid Commun</addtitle><description>Layer‐by‐layer (LbL) assembly has emerged as the leading non‐vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide‐based barrier films. This Feature Article is a mini‐review of LbL‐based multilayer thin films with a ‘nanobrick wall’ microstructure comprising polymeric mortar and nanoplatelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water‐based thin films exhibit oxygen transmission rates below 5 × 10‐3 cm3 m‐2 day‐1 atm‐1 and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake‐filled polymers are briefly reviewed.
This Feature Article reviews multilayer thin films, deposited layer‐by‐layer to produce a ‘nanobrick wall’ structure that imparts high gas barrier to permeable polymer substrates. These transparent, water‐based thin films exhibit a lower permeability than any other barrier thin film material.</description><subject>Aluminum Silicates - chemistry</subject><subject>Assembly</subject><subject>Barriers</subject><subject>Blood Platelets - chemistry</subject><subject>clays</subject><subject>Deposition</subject><subject>Diffusion</subject><subject>Food Packaging - methods</subject><subject>gas barrier</subject><subject>Humans</subject><subject>layer-by-layer assembly</subject><subject>Multilayers</subject><subject>Nanostructure</subject><subject>Nylons - chemistry</subject><subject>Oxygen - chemistry</subject><subject>oxygen transmission rate</subject><subject>Polyethylene - chemistry</subject><subject>Polyethylene Terephthalates - chemistry</subject><subject>Polymers</subject><subject>Polypropylenes - chemistry</subject><subject>Surface Properties</subject><subject>Thin films</subject><subject>Walls</subject><subject>Water - chemistry</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1v1DAQxS0EoqVw5YgsceGSxR5_JD5uV3RBWqBUhR4tx5mIFCdp7Wwh_z1etqwQFzjNaPR7T_P0CHnO2YIzBq97F_0CGFeMMaUekGOugBfCQPkw7wyg4ELoI_IkpeuMVJLBY3IEqspiqY6JvUCPw0SXzZ0bPCbaDXTtEj11MXYY6eXXfDjrQp_oXefoxs0Yi3oufi10mRL2dZjp2NLzMcw9xkTd0NDz4CYMOKWn5FHrQsJn9_OEfD57c7l6W2w-rt-tlpvCa2CqAIWica4SsuS8hkbKxhvTQFlp39Zg2rY0lW_BG_Tgc1p02khdKY4SW-3FCXm1972J4-0W02T7LnkMwQ04bpPl2oCQJuf-D7TihisDKqMv_0Kvx20ccpAdxUypteSZWuwpH8eUIrb2Jna5mNlyZnct2V1L9tBSFry4t93WPTYH_HctGTB74HsXcP6HnX2_vFj9aV7stV2a8MdB6-I3q0tRKnv1YZ2___KpulIbeyp-AkcZq3A</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Priolo, Morgan A.</creator><creator>Holder, Kevin M.</creator><creator>Guin, Tyler</creator><creator>Grunlan, Jaime C.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201505</creationdate><title>Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets</title><author>Priolo, Morgan A. ; Holder, Kevin M. ; Guin, Tyler ; Grunlan, Jaime C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6205-25e3daa834711b2d44dc99d2786cfb29ff798cf2c9ec2c150ea6946851e4ef6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aluminum Silicates - chemistry</topic><topic>Assembly</topic><topic>Barriers</topic><topic>Blood Platelets - chemistry</topic><topic>clays</topic><topic>Deposition</topic><topic>Diffusion</topic><topic>Food Packaging - methods</topic><topic>gas barrier</topic><topic>Humans</topic><topic>layer-by-layer assembly</topic><topic>Multilayers</topic><topic>Nanostructure</topic><topic>Nylons - chemistry</topic><topic>Oxygen - chemistry</topic><topic>oxygen transmission rate</topic><topic>Polyethylene - chemistry</topic><topic>Polyethylene Terephthalates - chemistry</topic><topic>Polymers</topic><topic>Polypropylenes - chemistry</topic><topic>Surface Properties</topic><topic>Thin films</topic><topic>Walls</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Priolo, Morgan A.</creatorcontrib><creatorcontrib>Holder, Kevin M.</creatorcontrib><creatorcontrib>Guin, Tyler</creatorcontrib><creatorcontrib>Grunlan, Jaime C.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Priolo, Morgan A.</au><au>Holder, Kevin M.</au><au>Guin, Tyler</au><au>Grunlan, Jaime C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol. Rapid Commun</addtitle><date>2015-05</date><risdate>2015</risdate><volume>36</volume><issue>10</issue><spage>866</spage><epage>879</epage><pages>866-879</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>Layer‐by‐layer (LbL) assembly has emerged as the leading non‐vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide‐based barrier films. This Feature Article is a mini‐review of LbL‐based multilayer thin films with a ‘nanobrick wall’ microstructure comprising polymeric mortar and nanoplatelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water‐based thin films exhibit oxygen transmission rates below 5 × 10‐3 cm3 m‐2 day‐1 atm‐1 and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake‐filled polymers are briefly reviewed.
This Feature Article reviews multilayer thin films, deposited layer‐by‐layer to produce a ‘nanobrick wall’ structure that imparts high gas barrier to permeable polymer substrates. These transparent, water‐based thin films exhibit a lower permeability than any other barrier thin film material.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>25800245</pmid><doi>10.1002/marc.201500055</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1336 |
ispartof | Macromolecular rapid communications., 2015-05, Vol.36 (10), p.866-879 |
issn | 1022-1336 1521-3927 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692349580 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Aluminum Silicates - chemistry Assembly Barriers Blood Platelets - chemistry clays Deposition Diffusion Food Packaging - methods gas barrier Humans layer-by-layer assembly Multilayers Nanostructure Nylons - chemistry Oxygen - chemistry oxygen transmission rate Polyethylene - chemistry Polyethylene Terephthalates - chemistry Polymers Polypropylenes - chemistry Surface Properties Thin films Walls Water - chemistry |
title | Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Advances%20in%20Gas%20Barrier%20Thin%20Films%20via%20Layer-by-Layer%20Assembly%20of%20Polymers%20and%20Platelets&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Priolo,%20Morgan%20A.&rft.date=2015-05&rft.volume=36&rft.issue=10&rft.spage=866&rft.epage=879&rft.pages=866-879&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.201500055&rft_dat=%3Cproquest_cross%3E1681915925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680976641&rft_id=info:pmid/25800245&rfr_iscdi=true |