Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets

Layer‐by‐layer (LbL) assembly has emerged as the leading non‐vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular rapid communications. 2015-05, Vol.36 (10), p.866-879
Hauptverfasser: Priolo, Morgan A., Holder, Kevin M., Guin, Tyler, Grunlan, Jaime C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 879
container_issue 10
container_start_page 866
container_title Macromolecular rapid communications.
container_volume 36
creator Priolo, Morgan A.
Holder, Kevin M.
Guin, Tyler
Grunlan, Jaime C.
description Layer‐by‐layer (LbL) assembly has emerged as the leading non‐vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide‐based barrier films. This Feature Article is a mini‐review of LbL‐based multilayer thin films with a ‘nanobrick wall’ microstructure comprising polymeric mortar and nano­platelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water‐based thin films exhibit oxygen transmission rates below 5 × 10‐3 cm3 m‐2 day‐1 atm‐1 and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake‐filled polymers are briefly reviewed. This Feature Article reviews multilayer thin films, deposited layer‐by‐layer to produce a ‘nanobrick wall’ structure that imparts high gas barrier to permeable polymer substrates. These transparent, water‐based thin films exhibit a lower permeability than any other barrier thin film material.
doi_str_mv 10.1002/marc.201500055
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692349580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1681915925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6205-25e3daa834711b2d44dc99d2786cfb29ff798cf2c9ec2c150ea6946851e4ef6c3</originalsourceid><addsrcrecordid>eNqNkc1v1DAQxS0EoqVw5YgsceGSxR5_JD5uV3RBWqBUhR4tx5mIFCdp7Wwh_z1etqwQFzjNaPR7T_P0CHnO2YIzBq97F_0CGFeMMaUekGOugBfCQPkw7wyg4ELoI_IkpeuMVJLBY3IEqspiqY6JvUCPw0SXzZ0bPCbaDXTtEj11MXYY6eXXfDjrQp_oXefoxs0Yi3oufi10mRL2dZjp2NLzMcw9xkTd0NDz4CYMOKWn5FHrQsJn9_OEfD57c7l6W2w-rt-tlpvCa2CqAIWica4SsuS8hkbKxhvTQFlp39Zg2rY0lW_BG_Tgc1p02khdKY4SW-3FCXm1972J4-0W02T7LnkMwQ04bpPl2oCQJuf-D7TihisDKqMv_0Kvx20ccpAdxUypteSZWuwpH8eUIrb2Jna5mNlyZnct2V1L9tBSFry4t93WPTYH_HctGTB74HsXcP6HnX2_vFj9aV7stV2a8MdB6-I3q0tRKnv1YZ2___KpulIbeyp-AkcZq3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680976641</pqid></control><display><type>article</type><title>Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Priolo, Morgan A. ; Holder, Kevin M. ; Guin, Tyler ; Grunlan, Jaime C.</creator><creatorcontrib>Priolo, Morgan A. ; Holder, Kevin M. ; Guin, Tyler ; Grunlan, Jaime C.</creatorcontrib><description>Layer‐by‐layer (LbL) assembly has emerged as the leading non‐vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide‐based barrier films. This Feature Article is a mini‐review of LbL‐based multilayer thin films with a ‘nanobrick wall’ microstructure comprising polymeric mortar and nano­platelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water‐based thin films exhibit oxygen transmission rates below 5 × 10‐3 cm3 m‐2 day‐1 atm‐1 and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake‐filled polymers are briefly reviewed. This Feature Article reviews multilayer thin films, deposited layer‐by‐layer to produce a ‘nanobrick wall’ structure that imparts high gas barrier to permeable polymer substrates. These transparent, water‐based thin films exhibit a lower permeability than any other barrier thin film material.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.201500055</identifier><identifier>PMID: 25800245</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Aluminum Silicates - chemistry ; Assembly ; Barriers ; Blood Platelets - chemistry ; clays ; Deposition ; Diffusion ; Food Packaging - methods ; gas barrier ; Humans ; layer-by-layer assembly ; Multilayers ; Nanostructure ; Nylons - chemistry ; Oxygen - chemistry ; oxygen transmission rate ; Polyethylene - chemistry ; Polyethylene Terephthalates - chemistry ; Polymers ; Polypropylenes - chemistry ; Surface Properties ; Thin films ; Walls ; Water - chemistry</subject><ispartof>Macromolecular rapid communications., 2015-05, Vol.36 (10), p.866-879</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright 2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6205-25e3daa834711b2d44dc99d2786cfb29ff798cf2c9ec2c150ea6946851e4ef6c3</citedby><cites>FETCH-LOGICAL-c6205-25e3daa834711b2d44dc99d2786cfb29ff798cf2c9ec2c150ea6946851e4ef6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmarc.201500055$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmarc.201500055$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25800245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Priolo, Morgan A.</creatorcontrib><creatorcontrib>Holder, Kevin M.</creatorcontrib><creatorcontrib>Guin, Tyler</creatorcontrib><creatorcontrib>Grunlan, Jaime C.</creatorcontrib><title>Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets</title><title>Macromolecular rapid communications.</title><addtitle>Macromol. Rapid Commun</addtitle><description>Layer‐by‐layer (LbL) assembly has emerged as the leading non‐vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide‐based barrier films. This Feature Article is a mini‐review of LbL‐based multilayer thin films with a ‘nanobrick wall’ microstructure comprising polymeric mortar and nano­platelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water‐based thin films exhibit oxygen transmission rates below 5 × 10‐3 cm3 m‐2 day‐1 atm‐1 and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake‐filled polymers are briefly reviewed. This Feature Article reviews multilayer thin films, deposited layer‐by‐layer to produce a ‘nanobrick wall’ structure that imparts high gas barrier to permeable polymer substrates. These transparent, water‐based thin films exhibit a lower permeability than any other barrier thin film material.</description><subject>Aluminum Silicates - chemistry</subject><subject>Assembly</subject><subject>Barriers</subject><subject>Blood Platelets - chemistry</subject><subject>clays</subject><subject>Deposition</subject><subject>Diffusion</subject><subject>Food Packaging - methods</subject><subject>gas barrier</subject><subject>Humans</subject><subject>layer-by-layer assembly</subject><subject>Multilayers</subject><subject>Nanostructure</subject><subject>Nylons - chemistry</subject><subject>Oxygen - chemistry</subject><subject>oxygen transmission rate</subject><subject>Polyethylene - chemistry</subject><subject>Polyethylene Terephthalates - chemistry</subject><subject>Polymers</subject><subject>Polypropylenes - chemistry</subject><subject>Surface Properties</subject><subject>Thin films</subject><subject>Walls</subject><subject>Water - chemistry</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1v1DAQxS0EoqVw5YgsceGSxR5_JD5uV3RBWqBUhR4tx5mIFCdp7Wwh_z1etqwQFzjNaPR7T_P0CHnO2YIzBq97F_0CGFeMMaUekGOugBfCQPkw7wyg4ELoI_IkpeuMVJLBY3IEqspiqY6JvUCPw0SXzZ0bPCbaDXTtEj11MXYY6eXXfDjrQp_oXefoxs0Yi3oufi10mRL2dZjp2NLzMcw9xkTd0NDz4CYMOKWn5FHrQsJn9_OEfD57c7l6W2w-rt-tlpvCa2CqAIWica4SsuS8hkbKxhvTQFlp39Zg2rY0lW_BG_Tgc1p02khdKY4SW-3FCXm1972J4-0W02T7LnkMwQ04bpPl2oCQJuf-D7TihisDKqMv_0Kvx20ccpAdxUypteSZWuwpH8eUIrb2Jna5mNlyZnct2V1L9tBSFry4t93WPTYH_HctGTB74HsXcP6HnX2_vFj9aV7stV2a8MdB6-I3q0tRKnv1YZ2___KpulIbeyp-AkcZq3A</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Priolo, Morgan A.</creator><creator>Holder, Kevin M.</creator><creator>Guin, Tyler</creator><creator>Grunlan, Jaime C.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201505</creationdate><title>Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets</title><author>Priolo, Morgan A. ; Holder, Kevin M. ; Guin, Tyler ; Grunlan, Jaime C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6205-25e3daa834711b2d44dc99d2786cfb29ff798cf2c9ec2c150ea6946851e4ef6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aluminum Silicates - chemistry</topic><topic>Assembly</topic><topic>Barriers</topic><topic>Blood Platelets - chemistry</topic><topic>clays</topic><topic>Deposition</topic><topic>Diffusion</topic><topic>Food Packaging - methods</topic><topic>gas barrier</topic><topic>Humans</topic><topic>layer-by-layer assembly</topic><topic>Multilayers</topic><topic>Nanostructure</topic><topic>Nylons - chemistry</topic><topic>Oxygen - chemistry</topic><topic>oxygen transmission rate</topic><topic>Polyethylene - chemistry</topic><topic>Polyethylene Terephthalates - chemistry</topic><topic>Polymers</topic><topic>Polypropylenes - chemistry</topic><topic>Surface Properties</topic><topic>Thin films</topic><topic>Walls</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Priolo, Morgan A.</creatorcontrib><creatorcontrib>Holder, Kevin M.</creatorcontrib><creatorcontrib>Guin, Tyler</creatorcontrib><creatorcontrib>Grunlan, Jaime C.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Priolo, Morgan A.</au><au>Holder, Kevin M.</au><au>Guin, Tyler</au><au>Grunlan, Jaime C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol. Rapid Commun</addtitle><date>2015-05</date><risdate>2015</risdate><volume>36</volume><issue>10</issue><spage>866</spage><epage>879</epage><pages>866-879</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>Layer‐by‐layer (LbL) assembly has emerged as the leading non‐vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide‐based barrier films. This Feature Article is a mini‐review of LbL‐based multilayer thin films with a ‘nanobrick wall’ microstructure comprising polymeric mortar and nano­platelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water‐based thin films exhibit oxygen transmission rates below 5 × 10‐3 cm3 m‐2 day‐1 atm‐1 and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake‐filled polymers are briefly reviewed. This Feature Article reviews multilayer thin films, deposited layer‐by‐layer to produce a ‘nanobrick wall’ structure that imparts high gas barrier to permeable polymer substrates. These transparent, water‐based thin films exhibit a lower permeability than any other barrier thin film material.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>25800245</pmid><doi>10.1002/marc.201500055</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1022-1336
ispartof Macromolecular rapid communications., 2015-05, Vol.36 (10), p.866-879
issn 1022-1336
1521-3927
language eng
recordid cdi_proquest_miscellaneous_1692349580
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Aluminum Silicates - chemistry
Assembly
Barriers
Blood Platelets - chemistry
clays
Deposition
Diffusion
Food Packaging - methods
gas barrier
Humans
layer-by-layer assembly
Multilayers
Nanostructure
Nylons - chemistry
Oxygen - chemistry
oxygen transmission rate
Polyethylene - chemistry
Polyethylene Terephthalates - chemistry
Polymers
Polypropylenes - chemistry
Surface Properties
Thin films
Walls
Water - chemistry
title Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Advances%20in%20Gas%20Barrier%20Thin%20Films%20via%20Layer-by-Layer%20Assembly%20of%20Polymers%20and%20Platelets&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Priolo,%20Morgan%20A.&rft.date=2015-05&rft.volume=36&rft.issue=10&rft.spage=866&rft.epage=879&rft.pages=866-879&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.201500055&rft_dat=%3Cproquest_cross%3E1681915925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680976641&rft_id=info:pmid/25800245&rfr_iscdi=true