The use of an acetoacetyl‐CoA synthase in place of a β‐ketothiolase enhances poly‐3‐hydroxybutyrate production in sugarcane mesophyll cells

Summary Engineering the production of polyhydroxyalkanoates (PHAs) into high biomass bioenergy crops has the potential to provide a sustainable supply of bioplastics and energy from a single plant feedstock. One of the major challenges in engineering C4 plants for the production of poly[(R)‐3‐hydrox...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2015-06, Vol.13 (5), p.700-707
Hauptverfasser: McQualter, Richard B., Petrasovits, Lars A., Gebbie, Leigh K., Schweitzer, Dirk, Blackman, Deborah M., Chrysanthopoulos, Panagiotis, Hodson, Mark P., Plan, Manuel R., Riches, James D., Snell, Kristi D., Brumbley, Stevens M., Nielsen, Lars K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 707
container_issue 5
container_start_page 700
container_title Plant biotechnology journal
container_volume 13
creator McQualter, Richard B.
Petrasovits, Lars A.
Gebbie, Leigh K.
Schweitzer, Dirk
Blackman, Deborah M.
Chrysanthopoulos, Panagiotis
Hodson, Mark P.
Plan, Manuel R.
Riches, James D.
Snell, Kristi D.
Brumbley, Stevens M.
Nielsen, Lars K.
description Summary Engineering the production of polyhydroxyalkanoates (PHAs) into high biomass bioenergy crops has the potential to provide a sustainable supply of bioplastics and energy from a single plant feedstock. One of the major challenges in engineering C4 plants for the production of poly[(R)‐3‐hydroxybutyrate] (PHB) is the significantly lower level of polymer produced in the chloroplasts of mesophyll (M) cells compared to bundle sheath (BS) cells, thereby limiting the full PHB yield‐potential of the plant. In this study, we provide evidence that the access to substrate for PHB synthesis may limit polymer production in M chloroplasts. Production of PHB in M cells of sugarcane is significantly increased by replacing β‐ketothiolase, the first enzyme in the bacterial PHA pathway, with acetoacetyl‐CoA synthase. This novel pathway enabled the production of PHB reaching an average of 6.3% of the dry weight of total leaf biomass, with levels ranging from 3.6 to 11.8% of the dry weight (DW) of individual leaves. These yields are more than twice the level reported in PHB‐producing sugarcane containing the β‐ketothiolase and illustrate the importance of producing polymer in mesophyll plastids to maximize yield. The molecular weight of the polymer produced was greater than 2 × 106 Da. These results are a major step forward in engineering a high biomass C4 grass for the commercial production of PHB.
doi_str_mv 10.1111/pbi.12298
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692349459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1681264503</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3658-f4b4ba46d74487725cce8031596b8ae1b6a6b47251e196a616a9ee914fdbc73f3</originalsourceid><addsrcrecordid>eNqNkk1u1TAUhS0EoqUwYAPIEhMmr_V_kmF5olCpEgzK2LKTG5LiF4c4UfGMJXTASlgIi2Al3LyWDhjVku0rn09Xx7qHkJecHXNcJ6Pvj7kQVfmIHHJlik1htHh8Xyt1QJ6ldMWY4Eabp-RAaC2F0vyQ_LzsgC4JaGypG6irYY7rkcOfHzfbeEpTHubOIdAPdAwo7Un6-xfqXxGeuz6GVYehc0MNiY4xZBQl7i43U_ye_TLnyc1Axyk2Sz33cVjbpeWLm2o3AN1BimOXQ6A1hJCekyetCwle3N1H5PPZu8vth83Fx_fn29OLzSiNLjet8so7ZZpCqbIohK5rKJnkujK-dMC9ccYrfOfAK6y5cRVAxVXb-LqQrTwib277oq9vC6TZ7vq0OkBPcUmWm0pIVSldPQAtpdSiZOYhKBdGaSYRff0fehWXacA_W8lMYQocJEPq1R21-B00dpz6nZuy_TdFBE5uges-QL7XObNrPCzGw-7jYT-9Pd8X8i94hrHe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067677650</pqid></control><display><type>article</type><title>The use of an acetoacetyl‐CoA synthase in place of a β‐ketothiolase enhances poly‐3‐hydroxybutyrate production in sugarcane mesophyll cells</title><source>Wiley Online Library Open Access</source><creator>McQualter, Richard B. ; Petrasovits, Lars A. ; Gebbie, Leigh K. ; Schweitzer, Dirk ; Blackman, Deborah M. ; Chrysanthopoulos, Panagiotis ; Hodson, Mark P. ; Plan, Manuel R. ; Riches, James D. ; Snell, Kristi D. ; Brumbley, Stevens M. ; Nielsen, Lars K.</creator><creatorcontrib>McQualter, Richard B. ; Petrasovits, Lars A. ; Gebbie, Leigh K. ; Schweitzer, Dirk ; Blackman, Deborah M. ; Chrysanthopoulos, Panagiotis ; Hodson, Mark P. ; Plan, Manuel R. ; Riches, James D. ; Snell, Kristi D. ; Brumbley, Stevens M. ; Nielsen, Lars K.</creatorcontrib><description>Summary Engineering the production of polyhydroxyalkanoates (PHAs) into high biomass bioenergy crops has the potential to provide a sustainable supply of bioplastics and energy from a single plant feedstock. One of the major challenges in engineering C4 plants for the production of poly[(R)‐3‐hydroxybutyrate] (PHB) is the significantly lower level of polymer produced in the chloroplasts of mesophyll (M) cells compared to bundle sheath (BS) cells, thereby limiting the full PHB yield‐potential of the plant. In this study, we provide evidence that the access to substrate for PHB synthesis may limit polymer production in M chloroplasts. Production of PHB in M cells of sugarcane is significantly increased by replacing β‐ketothiolase, the first enzyme in the bacterial PHA pathway, with acetoacetyl‐CoA synthase. This novel pathway enabled the production of PHB reaching an average of 6.3% of the dry weight of total leaf biomass, with levels ranging from 3.6 to 11.8% of the dry weight (DW) of individual leaves. These yields are more than twice the level reported in PHB‐producing sugarcane containing the β‐ketothiolase and illustrate the importance of producing polymer in mesophyll plastids to maximize yield. The molecular weight of the polymer produced was greater than 2 × 106 Da. These results are a major step forward in engineering a high biomass C4 grass for the commercial production of PHB.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12298</identifier><identifier>PMID: 25532451</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>acetoacetyl‐CoA synthase ; Acetyl-CoA C-Acyltransferase - genetics ; Acetyl-CoA C-Acyltransferase - metabolism ; Acyl Coenzyme A - metabolism ; Bacteria ; Biodiesel fuels ; Biofuels ; Biomass ; Bioplastics ; biopolymer ; Biosynthesis ; Biosynthetic Pathways ; Bundling ; Chemical synthesis ; Chloroplasts ; Chloroplasts - genetics ; Crops, Agricultural ; Dry weight ; Drying ; Energy crops ; Enzymes ; Hydroxybutyrates - metabolism ; Leaves ; Lignocellulose ; M cells ; Mesophyll ; Mesophyll Cells - metabolism ; Molecular weight ; NphT7 ; Pathways ; PHB ; Plant Leaves - enzymology ; Plant Leaves - genetics ; Plant Leaves - growth &amp; development ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants (botany) ; Plants (organisms) ; Plants, Genetically Modified ; Plastids - metabolism ; Poly-3-hydroxybutyrate ; Polyesters ; Polyesters - metabolism ; Polyhydroxyalkanoates ; Polyhydroxyalkanoates - metabolism ; Polyhydroxybutyrate ; Polyhydroxybutyric acid ; Polymers ; Renewable energy ; Saccharum - enzymology ; Saccharum - genetics ; Saccharum - growth &amp; development ; Sheaths ; Substrates ; Sugarcane ; Transgenic plants ; β‐ketothiolase</subject><ispartof>Plant biotechnology journal, 2015-06, Vol.13 (5), p.700-707</ispartof><rights>2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley &amp; Sons Ltd</rights><rights>2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2015. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1341-7871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12298$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12298$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12298$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25532451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McQualter, Richard B.</creatorcontrib><creatorcontrib>Petrasovits, Lars A.</creatorcontrib><creatorcontrib>Gebbie, Leigh K.</creatorcontrib><creatorcontrib>Schweitzer, Dirk</creatorcontrib><creatorcontrib>Blackman, Deborah M.</creatorcontrib><creatorcontrib>Chrysanthopoulos, Panagiotis</creatorcontrib><creatorcontrib>Hodson, Mark P.</creatorcontrib><creatorcontrib>Plan, Manuel R.</creatorcontrib><creatorcontrib>Riches, James D.</creatorcontrib><creatorcontrib>Snell, Kristi D.</creatorcontrib><creatorcontrib>Brumbley, Stevens M.</creatorcontrib><creatorcontrib>Nielsen, Lars K.</creatorcontrib><title>The use of an acetoacetyl‐CoA synthase in place of a β‐ketothiolase enhances poly‐3‐hydroxybutyrate production in sugarcane mesophyll cells</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary Engineering the production of polyhydroxyalkanoates (PHAs) into high biomass bioenergy crops has the potential to provide a sustainable supply of bioplastics and energy from a single plant feedstock. One of the major challenges in engineering C4 plants for the production of poly[(R)‐3‐hydroxybutyrate] (PHB) is the significantly lower level of polymer produced in the chloroplasts of mesophyll (M) cells compared to bundle sheath (BS) cells, thereby limiting the full PHB yield‐potential of the plant. In this study, we provide evidence that the access to substrate for PHB synthesis may limit polymer production in M chloroplasts. Production of PHB in M cells of sugarcane is significantly increased by replacing β‐ketothiolase, the first enzyme in the bacterial PHA pathway, with acetoacetyl‐CoA synthase. This novel pathway enabled the production of PHB reaching an average of 6.3% of the dry weight of total leaf biomass, with levels ranging from 3.6 to 11.8% of the dry weight (DW) of individual leaves. These yields are more than twice the level reported in PHB‐producing sugarcane containing the β‐ketothiolase and illustrate the importance of producing polymer in mesophyll plastids to maximize yield. The molecular weight of the polymer produced was greater than 2 × 106 Da. These results are a major step forward in engineering a high biomass C4 grass for the commercial production of PHB.</description><subject>acetoacetyl‐CoA synthase</subject><subject>Acetyl-CoA C-Acyltransferase - genetics</subject><subject>Acetyl-CoA C-Acyltransferase - metabolism</subject><subject>Acyl Coenzyme A - metabolism</subject><subject>Bacteria</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Bioplastics</subject><subject>biopolymer</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways</subject><subject>Bundling</subject><subject>Chemical synthesis</subject><subject>Chloroplasts</subject><subject>Chloroplasts - genetics</subject><subject>Crops, Agricultural</subject><subject>Dry weight</subject><subject>Drying</subject><subject>Energy crops</subject><subject>Enzymes</subject><subject>Hydroxybutyrates - metabolism</subject><subject>Leaves</subject><subject>Lignocellulose</subject><subject>M cells</subject><subject>Mesophyll</subject><subject>Mesophyll Cells - metabolism</subject><subject>Molecular weight</subject><subject>NphT7</subject><subject>Pathways</subject><subject>PHB</subject><subject>Plant Leaves - enzymology</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - growth &amp; development</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants (botany)</subject><subject>Plants (organisms)</subject><subject>Plants, Genetically Modified</subject><subject>Plastids - metabolism</subject><subject>Poly-3-hydroxybutyrate</subject><subject>Polyesters</subject><subject>Polyesters - metabolism</subject><subject>Polyhydroxyalkanoates</subject><subject>Polyhydroxyalkanoates - metabolism</subject><subject>Polyhydroxybutyrate</subject><subject>Polyhydroxybutyric acid</subject><subject>Polymers</subject><subject>Renewable energy</subject><subject>Saccharum - enzymology</subject><subject>Saccharum - genetics</subject><subject>Saccharum - growth &amp; development</subject><subject>Sheaths</subject><subject>Substrates</subject><subject>Sugarcane</subject><subject>Transgenic plants</subject><subject>β‐ketothiolase</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1u1TAUhS0EoqUwYAPIEhMmr_V_kmF5olCpEgzK2LKTG5LiF4c4UfGMJXTASlgIi2Al3LyWDhjVku0rn09Xx7qHkJecHXNcJ6Pvj7kQVfmIHHJlik1htHh8Xyt1QJ6ldMWY4Eabp-RAaC2F0vyQ_LzsgC4JaGypG6irYY7rkcOfHzfbeEpTHubOIdAPdAwo7Un6-xfqXxGeuz6GVYehc0MNiY4xZBQl7i43U_ye_TLnyc1Axyk2Sz33cVjbpeWLm2o3AN1BimOXQ6A1hJCekyetCwle3N1H5PPZu8vth83Fx_fn29OLzSiNLjet8so7ZZpCqbIohK5rKJnkujK-dMC9ccYrfOfAK6y5cRVAxVXb-LqQrTwib277oq9vC6TZ7vq0OkBPcUmWm0pIVSldPQAtpdSiZOYhKBdGaSYRff0fehWXacA_W8lMYQocJEPq1R21-B00dpz6nZuy_TdFBE5uges-QL7XObNrPCzGw-7jYT-9Pd8X8i94hrHe</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>McQualter, Richard B.</creator><creator>Petrasovits, Lars A.</creator><creator>Gebbie, Leigh K.</creator><creator>Schweitzer, Dirk</creator><creator>Blackman, Deborah M.</creator><creator>Chrysanthopoulos, Panagiotis</creator><creator>Hodson, Mark P.</creator><creator>Plan, Manuel R.</creator><creator>Riches, James D.</creator><creator>Snell, Kristi D.</creator><creator>Brumbley, Stevens M.</creator><creator>Nielsen, Lars K.</creator><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>7U5</scope><scope>F28</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1341-7871</orcidid></search><sort><creationdate>201506</creationdate><title>The use of an acetoacetyl‐CoA synthase in place of a β‐ketothiolase enhances poly‐3‐hydroxybutyrate production in sugarcane mesophyll cells</title><author>McQualter, Richard B. ; Petrasovits, Lars A. ; Gebbie, Leigh K. ; Schweitzer, Dirk ; Blackman, Deborah M. ; Chrysanthopoulos, Panagiotis ; Hodson, Mark P. ; Plan, Manuel R. ; Riches, James D. ; Snell, Kristi D. ; Brumbley, Stevens M. ; Nielsen, Lars K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3658-f4b4ba46d74487725cce8031596b8ae1b6a6b47251e196a616a9ee914fdbc73f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>acetoacetyl‐CoA synthase</topic><topic>Acetyl-CoA C-Acyltransferase - genetics</topic><topic>Acetyl-CoA C-Acyltransferase - metabolism</topic><topic>Acyl Coenzyme A - metabolism</topic><topic>Bacteria</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Bioplastics</topic><topic>biopolymer</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways</topic><topic>Bundling</topic><topic>Chemical synthesis</topic><topic>Chloroplasts</topic><topic>Chloroplasts - genetics</topic><topic>Crops, Agricultural</topic><topic>Dry weight</topic><topic>Drying</topic><topic>Energy crops</topic><topic>Enzymes</topic><topic>Hydroxybutyrates - metabolism</topic><topic>Leaves</topic><topic>Lignocellulose</topic><topic>M cells</topic><topic>Mesophyll</topic><topic>Mesophyll Cells - metabolism</topic><topic>Molecular weight</topic><topic>NphT7</topic><topic>Pathways</topic><topic>PHB</topic><topic>Plant Leaves - enzymology</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - growth &amp; development</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants (botany)</topic><topic>Plants (organisms)</topic><topic>Plants, Genetically Modified</topic><topic>Plastids - metabolism</topic><topic>Poly-3-hydroxybutyrate</topic><topic>Polyesters</topic><topic>Polyesters - metabolism</topic><topic>Polyhydroxyalkanoates</topic><topic>Polyhydroxyalkanoates - metabolism</topic><topic>Polyhydroxybutyrate</topic><topic>Polyhydroxybutyric acid</topic><topic>Polymers</topic><topic>Renewable energy</topic><topic>Saccharum - enzymology</topic><topic>Saccharum - genetics</topic><topic>Saccharum - growth &amp; development</topic><topic>Sheaths</topic><topic>Substrates</topic><topic>Sugarcane</topic><topic>Transgenic plants</topic><topic>β‐ketothiolase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McQualter, Richard B.</creatorcontrib><creatorcontrib>Petrasovits, Lars A.</creatorcontrib><creatorcontrib>Gebbie, Leigh K.</creatorcontrib><creatorcontrib>Schweitzer, Dirk</creatorcontrib><creatorcontrib>Blackman, Deborah M.</creatorcontrib><creatorcontrib>Chrysanthopoulos, Panagiotis</creatorcontrib><creatorcontrib>Hodson, Mark P.</creatorcontrib><creatorcontrib>Plan, Manuel R.</creatorcontrib><creatorcontrib>Riches, James D.</creatorcontrib><creatorcontrib>Snell, Kristi D.</creatorcontrib><creatorcontrib>Brumbley, Stevens M.</creatorcontrib><creatorcontrib>Nielsen, Lars K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McQualter, Richard B.</au><au>Petrasovits, Lars A.</au><au>Gebbie, Leigh K.</au><au>Schweitzer, Dirk</au><au>Blackman, Deborah M.</au><au>Chrysanthopoulos, Panagiotis</au><au>Hodson, Mark P.</au><au>Plan, Manuel R.</au><au>Riches, James D.</au><au>Snell, Kristi D.</au><au>Brumbley, Stevens M.</au><au>Nielsen, Lars K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of an acetoacetyl‐CoA synthase in place of a β‐ketothiolase enhances poly‐3‐hydroxybutyrate production in sugarcane mesophyll cells</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2015-06</date><risdate>2015</risdate><volume>13</volume><issue>5</issue><spage>700</spage><epage>707</epage><pages>700-707</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary Engineering the production of polyhydroxyalkanoates (PHAs) into high biomass bioenergy crops has the potential to provide a sustainable supply of bioplastics and energy from a single plant feedstock. One of the major challenges in engineering C4 plants for the production of poly[(R)‐3‐hydroxybutyrate] (PHB) is the significantly lower level of polymer produced in the chloroplasts of mesophyll (M) cells compared to bundle sheath (BS) cells, thereby limiting the full PHB yield‐potential of the plant. In this study, we provide evidence that the access to substrate for PHB synthesis may limit polymer production in M chloroplasts. Production of PHB in M cells of sugarcane is significantly increased by replacing β‐ketothiolase, the first enzyme in the bacterial PHA pathway, with acetoacetyl‐CoA synthase. This novel pathway enabled the production of PHB reaching an average of 6.3% of the dry weight of total leaf biomass, with levels ranging from 3.6 to 11.8% of the dry weight (DW) of individual leaves. These yields are more than twice the level reported in PHB‐producing sugarcane containing the β‐ketothiolase and illustrate the importance of producing polymer in mesophyll plastids to maximize yield. The molecular weight of the polymer produced was greater than 2 × 106 Da. These results are a major step forward in engineering a high biomass C4 grass for the commercial production of PHB.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>25532451</pmid><doi>10.1111/pbi.12298</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1341-7871</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2015-06, Vol.13 (5), p.700-707
issn 1467-7644
1467-7652
language eng
recordid cdi_proquest_miscellaneous_1692349459
source Wiley Online Library Open Access
subjects acetoacetyl‐CoA synthase
Acetyl-CoA C-Acyltransferase - genetics
Acetyl-CoA C-Acyltransferase - metabolism
Acyl Coenzyme A - metabolism
Bacteria
Biodiesel fuels
Biofuels
Biomass
Bioplastics
biopolymer
Biosynthesis
Biosynthetic Pathways
Bundling
Chemical synthesis
Chloroplasts
Chloroplasts - genetics
Crops, Agricultural
Dry weight
Drying
Energy crops
Enzymes
Hydroxybutyrates - metabolism
Leaves
Lignocellulose
M cells
Mesophyll
Mesophyll Cells - metabolism
Molecular weight
NphT7
Pathways
PHB
Plant Leaves - enzymology
Plant Leaves - genetics
Plant Leaves - growth & development
Plant Proteins - genetics
Plant Proteins - metabolism
Plants (botany)
Plants (organisms)
Plants, Genetically Modified
Plastids - metabolism
Poly-3-hydroxybutyrate
Polyesters
Polyesters - metabolism
Polyhydroxyalkanoates
Polyhydroxyalkanoates - metabolism
Polyhydroxybutyrate
Polyhydroxybutyric acid
Polymers
Renewable energy
Saccharum - enzymology
Saccharum - genetics
Saccharum - growth & development
Sheaths
Substrates
Sugarcane
Transgenic plants
β‐ketothiolase
title The use of an acetoacetyl‐CoA synthase in place of a β‐ketothiolase enhances poly‐3‐hydroxybutyrate production in sugarcane mesophyll cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20an%20acetoacetyl%E2%80%90CoA%20synthase%20in%20place%20of%20a%20%CE%B2%E2%80%90ketothiolase%20enhances%20poly%E2%80%903%E2%80%90hydroxybutyrate%20production%20in%20sugarcane%20mesophyll%20cells&rft.jtitle=Plant%20biotechnology%20journal&rft.au=McQualter,%20Richard%20B.&rft.date=2015-06&rft.volume=13&rft.issue=5&rft.spage=700&rft.epage=707&rft.pages=700-707&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12298&rft_dat=%3Cproquest_24P%3E1681264503%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067677650&rft_id=info:pmid/25532451&rfr_iscdi=true