Sliding friction surface contact mechanics model based on fractal theory
According to fractal theory, the sliding friction surface contact mechanics model considering the influences of the asperity's deformation and friction is established. The relationship of elastic-plastic deforming asperity's contact pressure and contact area is expressed by a cubic polynom...
Gespeichert in:
Veröffentlicht in: | Ji xie gong cheng xue bao 2012-09, Vol.48 (17), p.106-113 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113 |
---|---|
container_issue | 17 |
container_start_page | 106 |
container_title | Ji xie gong cheng xue bao |
container_volume | 48 |
creator | Wei, Long Liu, Qihe Zhang, Penggao |
description | According to fractal theory, the sliding friction surface contact mechanics model considering the influences of the asperity's deformation and friction is established. The relationship of elastic-plastic deforming asperity's contact pressure and contact area is expressed by a cubic polynomial, by which the continuous and smooth conditions of transformation of asperity contact area and contact pressure at the critical point of transition of distorting state are obtained. The mathematical expressions of critical elastic deformation micro contact area, critical plastic deformation micro contact area, dimension 1 real contact area of sliding friction surface are deduced. Theoretical calculation results show that real contact area increases with the increases of the load when the surface topography is constant. Real contact area decreases with the increases of characteristic length scale, and increases at first and then decreases with the increases of fractal dimension when the load is constant. Friction factor ha |
doi_str_mv | 10.3901/JME.2012.17.106 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692348961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1349425271</sourcerecordid><originalsourceid>FETCH-LOGICAL-p661-89e5c044a8d54452d05e440a92a573239a4ae73fd9cbecf2adc7719311b443fc3</originalsourceid><addsrcrecordid>eNqFjD1PwzAUAD2ARFU6s3pkSfCzn-14RFWhoCIGulcv_qCW8lHidODfUwl2phvudIzdgaiVE_Dw-rappQBZg61BmCu2ENraypjG3LBVKbkVoKSVWuOCbT-6HPLwydOU_ZzHgZfzlMhH7sdhJj_zPvojDdkX3o8hdrylEgO_hGm6aOr4fIzj9H3LrhN1Ja7-uGT7p81-va12788v68dddTIGqsZF7QUiNUEjahmEjoiCnCRtlVSOkKJVKTjfRp8kBW8tOAXQIqrk1ZLd_25P0_h1jmU-9Ln42HU0xPFcDmCcVNg4A_-nCh1KLS2oHyVBXIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349425271</pqid></control><display><type>article</type><title>Sliding friction surface contact mechanics model based on fractal theory</title><source>Alma/SFX Local Collection</source><creator>Wei, Long ; Liu, Qihe ; Zhang, Penggao</creator><creatorcontrib>Wei, Long ; Liu, Qihe ; Zhang, Penggao</creatorcontrib><description>According to fractal theory, the sliding friction surface contact mechanics model considering the influences of the asperity's deformation and friction is established. The relationship of elastic-plastic deforming asperity's contact pressure and contact area is expressed by a cubic polynomial, by which the continuous and smooth conditions of transformation of asperity contact area and contact pressure at the critical point of transition of distorting state are obtained. The mathematical expressions of critical elastic deformation micro contact area, critical plastic deformation micro contact area, dimension 1 real contact area of sliding friction surface are deduced. Theoretical calculation results show that real contact area increases with the increases of the load when the surface topography is constant. Real contact area decreases with the increases of characteristic length scale, and increases at first and then decreases with the increases of fractal dimension when the load is constant. Friction factor ha</description><identifier>ISSN: 0577-6686</identifier><identifier>DOI: 10.3901/JME.2012.17.106</identifier><language>chi</language><subject>Asperity ; Contact ; Contact pressure ; Fractal analysis ; Fractals ; Friction factor ; Mathematical models ; Sliding friction</subject><ispartof>Ji xie gong cheng xue bao, 2012-09, Vol.48 (17), p.106-113</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wei, Long</creatorcontrib><creatorcontrib>Liu, Qihe</creatorcontrib><creatorcontrib>Zhang, Penggao</creatorcontrib><title>Sliding friction surface contact mechanics model based on fractal theory</title><title>Ji xie gong cheng xue bao</title><description>According to fractal theory, the sliding friction surface contact mechanics model considering the influences of the asperity's deformation and friction is established. The relationship of elastic-plastic deforming asperity's contact pressure and contact area is expressed by a cubic polynomial, by which the continuous and smooth conditions of transformation of asperity contact area and contact pressure at the critical point of transition of distorting state are obtained. The mathematical expressions of critical elastic deformation micro contact area, critical plastic deformation micro contact area, dimension 1 real contact area of sliding friction surface are deduced. Theoretical calculation results show that real contact area increases with the increases of the load when the surface topography is constant. Real contact area decreases with the increases of characteristic length scale, and increases at first and then decreases with the increases of fractal dimension when the load is constant. Friction factor ha</description><subject>Asperity</subject><subject>Contact</subject><subject>Contact pressure</subject><subject>Fractal analysis</subject><subject>Fractals</subject><subject>Friction factor</subject><subject>Mathematical models</subject><subject>Sliding friction</subject><issn>0577-6686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFjD1PwzAUAD2ARFU6s3pkSfCzn-14RFWhoCIGulcv_qCW8lHidODfUwl2phvudIzdgaiVE_Dw-rappQBZg61BmCu2ENraypjG3LBVKbkVoKSVWuOCbT-6HPLwydOU_ZzHgZfzlMhH7sdhJj_zPvojDdkX3o8hdrylEgO_hGm6aOr4fIzj9H3LrhN1Ja7-uGT7p81-va12788v68dddTIGqsZF7QUiNUEjahmEjoiCnCRtlVSOkKJVKTjfRp8kBW8tOAXQIqrk1ZLd_25P0_h1jmU-9Ln42HU0xPFcDmCcVNg4A_-nCh1KLS2oHyVBXIM</recordid><startdate>20120905</startdate><enddate>20120905</enddate><creator>Wei, Long</creator><creator>Liu, Qihe</creator><creator>Zhang, Penggao</creator><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20120905</creationdate><title>Sliding friction surface contact mechanics model based on fractal theory</title><author>Wei, Long ; Liu, Qihe ; Zhang, Penggao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p661-89e5c044a8d54452d05e440a92a573239a4ae73fd9cbecf2adc7719311b443fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2012</creationdate><topic>Asperity</topic><topic>Contact</topic><topic>Contact pressure</topic><topic>Fractal analysis</topic><topic>Fractals</topic><topic>Friction factor</topic><topic>Mathematical models</topic><topic>Sliding friction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Long</creatorcontrib><creatorcontrib>Liu, Qihe</creatorcontrib><creatorcontrib>Zhang, Penggao</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Ji xie gong cheng xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Long</au><au>Liu, Qihe</au><au>Zhang, Penggao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sliding friction surface contact mechanics model based on fractal theory</atitle><jtitle>Ji xie gong cheng xue bao</jtitle><date>2012-09-05</date><risdate>2012</risdate><volume>48</volume><issue>17</issue><spage>106</spage><epage>113</epage><pages>106-113</pages><issn>0577-6686</issn><abstract>According to fractal theory, the sliding friction surface contact mechanics model considering the influences of the asperity's deformation and friction is established. The relationship of elastic-plastic deforming asperity's contact pressure and contact area is expressed by a cubic polynomial, by which the continuous and smooth conditions of transformation of asperity contact area and contact pressure at the critical point of transition of distorting state are obtained. The mathematical expressions of critical elastic deformation micro contact area, critical plastic deformation micro contact area, dimension 1 real contact area of sliding friction surface are deduced. Theoretical calculation results show that real contact area increases with the increases of the load when the surface topography is constant. Real contact area decreases with the increases of characteristic length scale, and increases at first and then decreases with the increases of fractal dimension when the load is constant. Friction factor ha</abstract><doi>10.3901/JME.2012.17.106</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0577-6686 |
ispartof | Ji xie gong cheng xue bao, 2012-09, Vol.48 (17), p.106-113 |
issn | 0577-6686 |
language | chi |
recordid | cdi_proquest_miscellaneous_1692348961 |
source | Alma/SFX Local Collection |
subjects | Asperity Contact Contact pressure Fractal analysis Fractals Friction factor Mathematical models Sliding friction |
title | Sliding friction surface contact mechanics model based on fractal theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A02%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sliding%20friction%20surface%20contact%20mechanics%20model%20based%20on%20fractal%20theory&rft.jtitle=Ji%20xie%20gong%20cheng%20xue%20bao&rft.au=Wei,%20Long&rft.date=2012-09-05&rft.volume=48&rft.issue=17&rft.spage=106&rft.epage=113&rft.pages=106-113&rft.issn=0577-6686&rft_id=info:doi/10.3901/JME.2012.17.106&rft_dat=%3Cproquest%3E1349425271%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349425271&rft_id=info:pmid/&rfr_iscdi=true |