Sliding friction surface contact mechanics model based on fractal theory

According to fractal theory, the sliding friction surface contact mechanics model considering the influences of the asperity's deformation and friction is established. The relationship of elastic-plastic deforming asperity's contact pressure and contact area is expressed by a cubic polynom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ji xie gong cheng xue bao 2012-09, Vol.48 (17), p.106-113
Hauptverfasser: Wei, Long, Liu, Qihe, Zhang, Penggao
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue 17
container_start_page 106
container_title Ji xie gong cheng xue bao
container_volume 48
creator Wei, Long
Liu, Qihe
Zhang, Penggao
description According to fractal theory, the sliding friction surface contact mechanics model considering the influences of the asperity's deformation and friction is established. The relationship of elastic-plastic deforming asperity's contact pressure and contact area is expressed by a cubic polynomial, by which the continuous and smooth conditions of transformation of asperity contact area and contact pressure at the critical point of transition of distorting state are obtained. The mathematical expressions of critical elastic deformation micro contact area, critical plastic deformation micro contact area, dimension 1 real contact area of sliding friction surface are deduced. Theoretical calculation results show that real contact area increases with the increases of the load when the surface topography is constant. Real contact area decreases with the increases of characteristic length scale, and increases at first and then decreases with the increases of fractal dimension when the load is constant. Friction factor ha
doi_str_mv 10.3901/JME.2012.17.106
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692348961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1349425271</sourcerecordid><originalsourceid>FETCH-LOGICAL-p661-89e5c044a8d54452d05e440a92a573239a4ae73fd9cbecf2adc7719311b443fc3</originalsourceid><addsrcrecordid>eNqFjD1PwzAUAD2ARFU6s3pkSfCzn-14RFWhoCIGulcv_qCW8lHidODfUwl2phvudIzdgaiVE_Dw-rappQBZg61BmCu2ENraypjG3LBVKbkVoKSVWuOCbT-6HPLwydOU_ZzHgZfzlMhH7sdhJj_zPvojDdkX3o8hdrylEgO_hGm6aOr4fIzj9H3LrhN1Ja7-uGT7p81-va12788v68dddTIGqsZF7QUiNUEjahmEjoiCnCRtlVSOkKJVKTjfRp8kBW8tOAXQIqrk1ZLd_25P0_h1jmU-9Ln42HU0xPFcDmCcVNg4A_-nCh1KLS2oHyVBXIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349425271</pqid></control><display><type>article</type><title>Sliding friction surface contact mechanics model based on fractal theory</title><source>Alma/SFX Local Collection</source><creator>Wei, Long ; Liu, Qihe ; Zhang, Penggao</creator><creatorcontrib>Wei, Long ; Liu, Qihe ; Zhang, Penggao</creatorcontrib><description>According to fractal theory, the sliding friction surface contact mechanics model considering the influences of the asperity's deformation and friction is established. The relationship of elastic-plastic deforming asperity's contact pressure and contact area is expressed by a cubic polynomial, by which the continuous and smooth conditions of transformation of asperity contact area and contact pressure at the critical point of transition of distorting state are obtained. The mathematical expressions of critical elastic deformation micro contact area, critical plastic deformation micro contact area, dimension 1 real contact area of sliding friction surface are deduced. Theoretical calculation results show that real contact area increases with the increases of the load when the surface topography is constant. Real contact area decreases with the increases of characteristic length scale, and increases at first and then decreases with the increases of fractal dimension when the load is constant. Friction factor ha</description><identifier>ISSN: 0577-6686</identifier><identifier>DOI: 10.3901/JME.2012.17.106</identifier><language>chi</language><subject>Asperity ; Contact ; Contact pressure ; Fractal analysis ; Fractals ; Friction factor ; Mathematical models ; Sliding friction</subject><ispartof>Ji xie gong cheng xue bao, 2012-09, Vol.48 (17), p.106-113</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wei, Long</creatorcontrib><creatorcontrib>Liu, Qihe</creatorcontrib><creatorcontrib>Zhang, Penggao</creatorcontrib><title>Sliding friction surface contact mechanics model based on fractal theory</title><title>Ji xie gong cheng xue bao</title><description>According to fractal theory, the sliding friction surface contact mechanics model considering the influences of the asperity's deformation and friction is established. The relationship of elastic-plastic deforming asperity's contact pressure and contact area is expressed by a cubic polynomial, by which the continuous and smooth conditions of transformation of asperity contact area and contact pressure at the critical point of transition of distorting state are obtained. The mathematical expressions of critical elastic deformation micro contact area, critical plastic deformation micro contact area, dimension 1 real contact area of sliding friction surface are deduced. Theoretical calculation results show that real contact area increases with the increases of the load when the surface topography is constant. Real contact area decreases with the increases of characteristic length scale, and increases at first and then decreases with the increases of fractal dimension when the load is constant. Friction factor ha</description><subject>Asperity</subject><subject>Contact</subject><subject>Contact pressure</subject><subject>Fractal analysis</subject><subject>Fractals</subject><subject>Friction factor</subject><subject>Mathematical models</subject><subject>Sliding friction</subject><issn>0577-6686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFjD1PwzAUAD2ARFU6s3pkSfCzn-14RFWhoCIGulcv_qCW8lHidODfUwl2phvudIzdgaiVE_Dw-rappQBZg61BmCu2ENraypjG3LBVKbkVoKSVWuOCbT-6HPLwydOU_ZzHgZfzlMhH7sdhJj_zPvojDdkX3o8hdrylEgO_hGm6aOr4fIzj9H3LrhN1Ja7-uGT7p81-va12788v68dddTIGqsZF7QUiNUEjahmEjoiCnCRtlVSOkKJVKTjfRp8kBW8tOAXQIqrk1ZLd_25P0_h1jmU-9Ln42HU0xPFcDmCcVNg4A_-nCh1KLS2oHyVBXIM</recordid><startdate>20120905</startdate><enddate>20120905</enddate><creator>Wei, Long</creator><creator>Liu, Qihe</creator><creator>Zhang, Penggao</creator><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20120905</creationdate><title>Sliding friction surface contact mechanics model based on fractal theory</title><author>Wei, Long ; Liu, Qihe ; Zhang, Penggao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p661-89e5c044a8d54452d05e440a92a573239a4ae73fd9cbecf2adc7719311b443fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2012</creationdate><topic>Asperity</topic><topic>Contact</topic><topic>Contact pressure</topic><topic>Fractal analysis</topic><topic>Fractals</topic><topic>Friction factor</topic><topic>Mathematical models</topic><topic>Sliding friction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Long</creatorcontrib><creatorcontrib>Liu, Qihe</creatorcontrib><creatorcontrib>Zhang, Penggao</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Ji xie gong cheng xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Long</au><au>Liu, Qihe</au><au>Zhang, Penggao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sliding friction surface contact mechanics model based on fractal theory</atitle><jtitle>Ji xie gong cheng xue bao</jtitle><date>2012-09-05</date><risdate>2012</risdate><volume>48</volume><issue>17</issue><spage>106</spage><epage>113</epage><pages>106-113</pages><issn>0577-6686</issn><abstract>According to fractal theory, the sliding friction surface contact mechanics model considering the influences of the asperity's deformation and friction is established. The relationship of elastic-plastic deforming asperity's contact pressure and contact area is expressed by a cubic polynomial, by which the continuous and smooth conditions of transformation of asperity contact area and contact pressure at the critical point of transition of distorting state are obtained. The mathematical expressions of critical elastic deformation micro contact area, critical plastic deformation micro contact area, dimension 1 real contact area of sliding friction surface are deduced. Theoretical calculation results show that real contact area increases with the increases of the load when the surface topography is constant. Real contact area decreases with the increases of characteristic length scale, and increases at first and then decreases with the increases of fractal dimension when the load is constant. Friction factor ha</abstract><doi>10.3901/JME.2012.17.106</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0577-6686
ispartof Ji xie gong cheng xue bao, 2012-09, Vol.48 (17), p.106-113
issn 0577-6686
language chi
recordid cdi_proquest_miscellaneous_1692348961
source Alma/SFX Local Collection
subjects Asperity
Contact
Contact pressure
Fractal analysis
Fractals
Friction factor
Mathematical models
Sliding friction
title Sliding friction surface contact mechanics model based on fractal theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A02%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sliding%20friction%20surface%20contact%20mechanics%20model%20based%20on%20fractal%20theory&rft.jtitle=Ji%20xie%20gong%20cheng%20xue%20bao&rft.au=Wei,%20Long&rft.date=2012-09-05&rft.volume=48&rft.issue=17&rft.spage=106&rft.epage=113&rft.pages=106-113&rft.issn=0577-6686&rft_id=info:doi/10.3901/JME.2012.17.106&rft_dat=%3Cproquest%3E1349425271%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349425271&rft_id=info:pmid/&rfr_iscdi=true