Synthesis of BaTaO2N Powders Utilizing NH3 Decomposition

The current methodology for perovskite oxynitride synthesis is a gas–solid reaction with ammonia. However, a competing reaction exists, where ammonia dissociates to inert N2, rather than a nascent, active nitriding species. Therefore, oxynitride synthesis is controlled by the composition of the gas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2011-12, Vol.94 (12), p.4263-4268
Hauptverfasser: Brophy, Matthew R., Pilgrim, Steven M., Schulze, Walter A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4268
container_issue 12
container_start_page 4263
container_title Journal of the American Ceramic Society
container_volume 94
creator Brophy, Matthew R.
Pilgrim, Steven M.
Schulze, Walter A.
description The current methodology for perovskite oxynitride synthesis is a gas–solid reaction with ammonia. However, a competing reaction exists, where ammonia dissociates to inert N2, rather than a nascent, active nitriding species. Therefore, oxynitride synthesis is controlled by the composition of the gas phase. Control of key processing variables (temperature, flow velocity, sample placement, temperature distribution, furnace configuration) determines the gas‐phase components (NH3, N2, and H2) and subsequently, the reaction rate and purity of BaTaO2N powders.
doi_str_mv 10.1111/j.1551-2916.2011.04826.x
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692347740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671345343</sourcerecordid><originalsourceid>FETCH-LOGICAL-i4636-287a6b290058f262adcdf18976c6d0fb068feb2804592dd0ba50fa9cc7709c33</originalsourceid><addsrcrecordid>eNqNkF1PwjAUQBujiYj-hz36snnbbv14MUFA0BA-IsbHpts6LY4N1xHAX-8mhmfvS-9NT87DQcjDEOBm7lYBjiLsE4lZQADjAEJBWLA_Q53TxznqAADxuSBwia6cWzUnliLsIPFyKOoP46zzysx70Es9I1NvXu5SUznvtba5_bbFuzcdU29gknK9KZ2tbVlco4tM587c_L1dtHwcLvtjfzIbPfV7E9-GjDKfCK5ZTCRAJDLCiE6TNMNCcpawFLIYmMhMTASEkSRpCrGOINMySTgHmVDaRbdH7aYqv7bG1WptXWLyXBem3DqFmSQ05DyEf6Ac0zCi4T-sTR1GCESsQe-P6M7m5qA2lV3r6tAQqs2vVqqtrNrKqs2vfvOrvXru9Yft2gj8o8C62uxPAl19KsYpj9TbdKQGdLwgi_lcCfoD6kSHkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019622056</pqid></control><display><type>article</type><title>Synthesis of BaTaO2N Powders Utilizing NH3 Decomposition</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Brophy, Matthew R. ; Pilgrim, Steven M. ; Schulze, Walter A.</creator><contributor>Suvaci, E.</contributor><creatorcontrib>Brophy, Matthew R. ; Pilgrim, Steven M. ; Schulze, Walter A. ; Suvaci, E.</creatorcontrib><description>The current methodology for perovskite oxynitride synthesis is a gas–solid reaction with ammonia. However, a competing reaction exists, where ammonia dissociates to inert N2, rather than a nascent, active nitriding species. Therefore, oxynitride synthesis is controlled by the composition of the gas phase. Control of key processing variables (temperature, flow velocity, sample placement, temperature distribution, furnace configuration) determines the gas‐phase components (NH3, N2, and H2) and subsequently, the reaction rate and purity of BaTaO2N powders.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1551-2916.2011.04826.x</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Ammonia ; Ceramics ; Furnaces ; Gas-solid reactions ; Inert ; Oxynitrides ; Placement ; Synthesis</subject><ispartof>Journal of the American Ceramic Society, 2011-12, Vol.94 (12), p.4263-4268</ispartof><rights>2011 The American Ceramic Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1551-2916.2011.04826.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1551-2916.2011.04826.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><contributor>Suvaci, E.</contributor><creatorcontrib>Brophy, Matthew R.</creatorcontrib><creatorcontrib>Pilgrim, Steven M.</creatorcontrib><creatorcontrib>Schulze, Walter A.</creatorcontrib><title>Synthesis of BaTaO2N Powders Utilizing NH3 Decomposition</title><title>Journal of the American Ceramic Society</title><addtitle>J. Am. Ceram. Soc</addtitle><description>The current methodology for perovskite oxynitride synthesis is a gas–solid reaction with ammonia. However, a competing reaction exists, where ammonia dissociates to inert N2, rather than a nascent, active nitriding species. Therefore, oxynitride synthesis is controlled by the composition of the gas phase. Control of key processing variables (temperature, flow velocity, sample placement, temperature distribution, furnace configuration) determines the gas‐phase components (NH3, N2, and H2) and subsequently, the reaction rate and purity of BaTaO2N powders.</description><subject>Ammonia</subject><subject>Ceramics</subject><subject>Furnaces</subject><subject>Gas-solid reactions</subject><subject>Inert</subject><subject>Oxynitrides</subject><subject>Placement</subject><subject>Synthesis</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkF1PwjAUQBujiYj-hz36snnbbv14MUFA0BA-IsbHpts6LY4N1xHAX-8mhmfvS-9NT87DQcjDEOBm7lYBjiLsE4lZQADjAEJBWLA_Q53TxznqAADxuSBwia6cWzUnliLsIPFyKOoP46zzysx70Es9I1NvXu5SUznvtba5_bbFuzcdU29gknK9KZ2tbVlco4tM587c_L1dtHwcLvtjfzIbPfV7E9-GjDKfCK5ZTCRAJDLCiE6TNMNCcpawFLIYmMhMTASEkSRpCrGOINMySTgHmVDaRbdH7aYqv7bG1WptXWLyXBem3DqFmSQ05DyEf6Ac0zCi4T-sTR1GCESsQe-P6M7m5qA2lV3r6tAQqs2vVqqtrNrKqs2vfvOrvXru9Yft2gj8o8C62uxPAl19KsYpj9TbdKQGdLwgi_lcCfoD6kSHkQ</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Brophy, Matthew R.</creator><creator>Pilgrim, Steven M.</creator><creator>Schulze, Walter A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201112</creationdate><title>Synthesis of BaTaO2N Powders Utilizing NH3 Decomposition</title><author>Brophy, Matthew R. ; Pilgrim, Steven M. ; Schulze, Walter A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i4636-287a6b290058f262adcdf18976c6d0fb068feb2804592dd0ba50fa9cc7709c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Ammonia</topic><topic>Ceramics</topic><topic>Furnaces</topic><topic>Gas-solid reactions</topic><topic>Inert</topic><topic>Oxynitrides</topic><topic>Placement</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brophy, Matthew R.</creatorcontrib><creatorcontrib>Pilgrim, Steven M.</creatorcontrib><creatorcontrib>Schulze, Walter A.</creatorcontrib><collection>Istex</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brophy, Matthew R.</au><au>Pilgrim, Steven M.</au><au>Schulze, Walter A.</au><au>Suvaci, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of BaTaO2N Powders Utilizing NH3 Decomposition</atitle><jtitle>Journal of the American Ceramic Society</jtitle><addtitle>J. Am. Ceram. Soc</addtitle><date>2011-12</date><risdate>2011</risdate><volume>94</volume><issue>12</issue><spage>4263</spage><epage>4268</epage><pages>4263-4268</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>The current methodology for perovskite oxynitride synthesis is a gas–solid reaction with ammonia. However, a competing reaction exists, where ammonia dissociates to inert N2, rather than a nascent, active nitriding species. Therefore, oxynitride synthesis is controlled by the composition of the gas phase. Control of key processing variables (temperature, flow velocity, sample placement, temperature distribution, furnace configuration) determines the gas‐phase components (NH3, N2, and H2) and subsequently, the reaction rate and purity of BaTaO2N powders.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1551-2916.2011.04826.x</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2011-12, Vol.94 (12), p.4263-4268
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_miscellaneous_1692347740
source Wiley Online Library Journals Frontfile Complete
subjects Ammonia
Ceramics
Furnaces
Gas-solid reactions
Inert
Oxynitrides
Placement
Synthesis
title Synthesis of BaTaO2N Powders Utilizing NH3 Decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20BaTaO2N%20Powders%20Utilizing%20NH3%20Decomposition&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Brophy,%20Matthew%20R.&rft.date=2011-12&rft.volume=94&rft.issue=12&rft.spage=4263&rft.epage=4268&rft.pages=4263-4268&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/j.1551-2916.2011.04826.x&rft_dat=%3Cproquest_wiley%3E1671345343%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019622056&rft_id=info:pmid/&rfr_iscdi=true