Synthesis of BaTaO2N Powders Utilizing NH3 Decomposition
The current methodology for perovskite oxynitride synthesis is a gas–solid reaction with ammonia. However, a competing reaction exists, where ammonia dissociates to inert N2, rather than a nascent, active nitriding species. Therefore, oxynitride synthesis is controlled by the composition of the gas...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2011-12, Vol.94 (12), p.4263-4268 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4268 |
---|---|
container_issue | 12 |
container_start_page | 4263 |
container_title | Journal of the American Ceramic Society |
container_volume | 94 |
creator | Brophy, Matthew R. Pilgrim, Steven M. Schulze, Walter A. |
description | The current methodology for perovskite oxynitride synthesis is a gas–solid reaction with ammonia. However, a competing reaction exists, where ammonia dissociates to inert N2, rather than a nascent, active nitriding species. Therefore, oxynitride synthesis is controlled by the composition of the gas phase. Control of key processing variables (temperature, flow velocity, sample placement, temperature distribution, furnace configuration) determines the gas‐phase components (NH3, N2, and H2) and subsequently, the reaction rate and purity of BaTaO2N powders. |
doi_str_mv | 10.1111/j.1551-2916.2011.04826.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692347740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671345343</sourcerecordid><originalsourceid>FETCH-LOGICAL-i4636-287a6b290058f262adcdf18976c6d0fb068feb2804592dd0ba50fa9cc7709c33</originalsourceid><addsrcrecordid>eNqNkF1PwjAUQBujiYj-hz36snnbbv14MUFA0BA-IsbHpts6LY4N1xHAX-8mhmfvS-9NT87DQcjDEOBm7lYBjiLsE4lZQADjAEJBWLA_Q53TxznqAADxuSBwia6cWzUnliLsIPFyKOoP46zzysx70Es9I1NvXu5SUznvtba5_bbFuzcdU29gknK9KZ2tbVlco4tM587c_L1dtHwcLvtjfzIbPfV7E9-GjDKfCK5ZTCRAJDLCiE6TNMNCcpawFLIYmMhMTASEkSRpCrGOINMySTgHmVDaRbdH7aYqv7bG1WptXWLyXBem3DqFmSQ05DyEf6Ac0zCi4T-sTR1GCESsQe-P6M7m5qA2lV3r6tAQqs2vVqqtrNrKqs2vfvOrvXru9Yft2gj8o8C62uxPAl19KsYpj9TbdKQGdLwgi_lcCfoD6kSHkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019622056</pqid></control><display><type>article</type><title>Synthesis of BaTaO2N Powders Utilizing NH3 Decomposition</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Brophy, Matthew R. ; Pilgrim, Steven M. ; Schulze, Walter A.</creator><contributor>Suvaci, E.</contributor><creatorcontrib>Brophy, Matthew R. ; Pilgrim, Steven M. ; Schulze, Walter A. ; Suvaci, E.</creatorcontrib><description>The current methodology for perovskite oxynitride synthesis is a gas–solid reaction with ammonia. However, a competing reaction exists, where ammonia dissociates to inert N2, rather than a nascent, active nitriding species. Therefore, oxynitride synthesis is controlled by the composition of the gas phase. Control of key processing variables (temperature, flow velocity, sample placement, temperature distribution, furnace configuration) determines the gas‐phase components (NH3, N2, and H2) and subsequently, the reaction rate and purity of BaTaO2N powders.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1551-2916.2011.04826.x</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Ammonia ; Ceramics ; Furnaces ; Gas-solid reactions ; Inert ; Oxynitrides ; Placement ; Synthesis</subject><ispartof>Journal of the American Ceramic Society, 2011-12, Vol.94 (12), p.4263-4268</ispartof><rights>2011 The American Ceramic Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1551-2916.2011.04826.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1551-2916.2011.04826.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><contributor>Suvaci, E.</contributor><creatorcontrib>Brophy, Matthew R.</creatorcontrib><creatorcontrib>Pilgrim, Steven M.</creatorcontrib><creatorcontrib>Schulze, Walter A.</creatorcontrib><title>Synthesis of BaTaO2N Powders Utilizing NH3 Decomposition</title><title>Journal of the American Ceramic Society</title><addtitle>J. Am. Ceram. Soc</addtitle><description>The current methodology for perovskite oxynitride synthesis is a gas–solid reaction with ammonia. However, a competing reaction exists, where ammonia dissociates to inert N2, rather than a nascent, active nitriding species. Therefore, oxynitride synthesis is controlled by the composition of the gas phase. Control of key processing variables (temperature, flow velocity, sample placement, temperature distribution, furnace configuration) determines the gas‐phase components (NH3, N2, and H2) and subsequently, the reaction rate and purity of BaTaO2N powders.</description><subject>Ammonia</subject><subject>Ceramics</subject><subject>Furnaces</subject><subject>Gas-solid reactions</subject><subject>Inert</subject><subject>Oxynitrides</subject><subject>Placement</subject><subject>Synthesis</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkF1PwjAUQBujiYj-hz36snnbbv14MUFA0BA-IsbHpts6LY4N1xHAX-8mhmfvS-9NT87DQcjDEOBm7lYBjiLsE4lZQADjAEJBWLA_Q53TxznqAADxuSBwia6cWzUnliLsIPFyKOoP46zzysx70Es9I1NvXu5SUznvtba5_bbFuzcdU29gknK9KZ2tbVlco4tM587c_L1dtHwcLvtjfzIbPfV7E9-GjDKfCK5ZTCRAJDLCiE6TNMNCcpawFLIYmMhMTASEkSRpCrGOINMySTgHmVDaRbdH7aYqv7bG1WptXWLyXBem3DqFmSQ05DyEf6Ac0zCi4T-sTR1GCESsQe-P6M7m5qA2lV3r6tAQqs2vVqqtrNrKqs2vfvOrvXru9Yft2gj8o8C62uxPAl19KsYpj9TbdKQGdLwgi_lcCfoD6kSHkQ</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Brophy, Matthew R.</creator><creator>Pilgrim, Steven M.</creator><creator>Schulze, Walter A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201112</creationdate><title>Synthesis of BaTaO2N Powders Utilizing NH3 Decomposition</title><author>Brophy, Matthew R. ; Pilgrim, Steven M. ; Schulze, Walter A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i4636-287a6b290058f262adcdf18976c6d0fb068feb2804592dd0ba50fa9cc7709c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Ammonia</topic><topic>Ceramics</topic><topic>Furnaces</topic><topic>Gas-solid reactions</topic><topic>Inert</topic><topic>Oxynitrides</topic><topic>Placement</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brophy, Matthew R.</creatorcontrib><creatorcontrib>Pilgrim, Steven M.</creatorcontrib><creatorcontrib>Schulze, Walter A.</creatorcontrib><collection>Istex</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brophy, Matthew R.</au><au>Pilgrim, Steven M.</au><au>Schulze, Walter A.</au><au>Suvaci, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of BaTaO2N Powders Utilizing NH3 Decomposition</atitle><jtitle>Journal of the American Ceramic Society</jtitle><addtitle>J. Am. Ceram. Soc</addtitle><date>2011-12</date><risdate>2011</risdate><volume>94</volume><issue>12</issue><spage>4263</spage><epage>4268</epage><pages>4263-4268</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>The current methodology for perovskite oxynitride synthesis is a gas–solid reaction with ammonia. However, a competing reaction exists, where ammonia dissociates to inert N2, rather than a nascent, active nitriding species. Therefore, oxynitride synthesis is controlled by the composition of the gas phase. Control of key processing variables (temperature, flow velocity, sample placement, temperature distribution, furnace configuration) determines the gas‐phase components (NH3, N2, and H2) and subsequently, the reaction rate and purity of BaTaO2N powders.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1551-2916.2011.04826.x</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2011-12, Vol.94 (12), p.4263-4268 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692347740 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Ammonia Ceramics Furnaces Gas-solid reactions Inert Oxynitrides Placement Synthesis |
title | Synthesis of BaTaO2N Powders Utilizing NH3 Decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20BaTaO2N%20Powders%20Utilizing%20NH3%20Decomposition&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Brophy,%20Matthew%20R.&rft.date=2011-12&rft.volume=94&rft.issue=12&rft.spage=4263&rft.epage=4268&rft.pages=4263-4268&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/j.1551-2916.2011.04826.x&rft_dat=%3Cproquest_wiley%3E1671345343%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019622056&rft_id=info:pmid/&rfr_iscdi=true |