Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique
This paper presents a simple but effective additive hyperelasticity technique to circumvent numerical difficulties in solving the material density-based topology optimization of elastic structures undergoing large displacements. By adding a special hyperelastic material to the design domain, excessi...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2015-04, Vol.286, p.422-441 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 441 |
---|---|
container_issue | |
container_start_page | 422 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 286 |
creator | Luo, Yangjun Wang, Michael Yu Kang, Zhan |
description | This paper presents a simple but effective additive hyperelasticity technique to circumvent numerical difficulties in solving the material density-based topology optimization of elastic structures undergoing large displacements. By adding a special hyperelastic material to the design domain, excessive distortion and numerical instability occurred in the low-density or intermediate-density elements are thus effectively alleviated during the optimization process. The properties of the additional hyperelastic material are established based on a new interpolation scheme, which allows the nonlinear mechanical behaviour of the remodelled structure to achieve an acceptable approximation to the original structure. In conjunction with the adjoint variable scheme for sensitivity analysis, the topology optimization problem is solved by a gradient-based mathematical programming algorithm. Numerical examples are given to demonstrate the effectiveness of the proposed method. |
doi_str_mv | 10.1016/j.cma.2014.12.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692346544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782514005027</els_id><sourcerecordid>1692346544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-ec664faf2e228e09e6bb32ffc7a1054530a734f7343c8ea7fcbba067bf3977683</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAey8ZJPgR-IkYoUqXlIlNmVtOc64dZXEwXYrha_HVVkzmtFs7p2rOQjdU5JTQsXjPteDyhmhRU5ZThi_QAtaV03GKK8v0YKQosyqmpXX6CaEPUlVU7ZA-42bXO-2M3ZTtIP9UdG6ETuDt-AGiN5q1fczHt3Y2xGUxyH6g44HDwG3KkCHk1yl7job7RHwbp7AQ69CtNrGGUfQu9F-H-AWXRnVB7j720v09fqyWb1n68-3j9XzOtO8ETEDLURhlGHAWA2kAdG2nBmjK0VJWZScqIoXJg3XNajK6LZVRFSt4U1ViZov0cP57uRdig1RDjZo6Hs1gjsESUXDeCHKokhSepZq70LwYOTk7aD8LCmRJ65yLxNXeeIqKZOJa_I8nT2Qfjha8DJoC6OGznrQUXbO_uP-BQI-g60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692346544</pqid></control><display><type>article</type><title>Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Luo, Yangjun ; Wang, Michael Yu ; Kang, Zhan</creator><creatorcontrib>Luo, Yangjun ; Wang, Michael Yu ; Kang, Zhan</creatorcontrib><description>This paper presents a simple but effective additive hyperelasticity technique to circumvent numerical difficulties in solving the material density-based topology optimization of elastic structures undergoing large displacements. By adding a special hyperelastic material to the design domain, excessive distortion and numerical instability occurred in the low-density or intermediate-density elements are thus effectively alleviated during the optimization process. The properties of the additional hyperelastic material are established based on a new interpolation scheme, which allows the nonlinear mechanical behaviour of the remodelled structure to achieve an acceptable approximation to the original structure. In conjunction with the adjoint variable scheme for sensitivity analysis, the topology optimization problem is solved by a gradient-based mathematical programming algorithm. Numerical examples are given to demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2014.12.023</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Additives ; Algorithms ; Computer simulation ; Geometrical nonlinearity ; Hyperelastic material ; Instability ; Mathematical models ; Nonlinearity ; Sensitivity analysis ; Topology optimization</subject><ispartof>Computer methods in applied mechanics and engineering, 2015-04, Vol.286, p.422-441</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-ec664faf2e228e09e6bb32ffc7a1054530a734f7343c8ea7fcbba067bf3977683</citedby><cites>FETCH-LOGICAL-c396t-ec664faf2e228e09e6bb32ffc7a1054530a734f7343c8ea7fcbba067bf3977683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782514005027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Luo, Yangjun</creatorcontrib><creatorcontrib>Wang, Michael Yu</creatorcontrib><creatorcontrib>Kang, Zhan</creatorcontrib><title>Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique</title><title>Computer methods in applied mechanics and engineering</title><description>This paper presents a simple but effective additive hyperelasticity technique to circumvent numerical difficulties in solving the material density-based topology optimization of elastic structures undergoing large displacements. By adding a special hyperelastic material to the design domain, excessive distortion and numerical instability occurred in the low-density or intermediate-density elements are thus effectively alleviated during the optimization process. The properties of the additional hyperelastic material are established based on a new interpolation scheme, which allows the nonlinear mechanical behaviour of the remodelled structure to achieve an acceptable approximation to the original structure. In conjunction with the adjoint variable scheme for sensitivity analysis, the topology optimization problem is solved by a gradient-based mathematical programming algorithm. Numerical examples are given to demonstrate the effectiveness of the proposed method.</description><subject>Additives</subject><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Geometrical nonlinearity</subject><subject>Hyperelastic material</subject><subject>Instability</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Sensitivity analysis</subject><subject>Topology optimization</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAey8ZJPgR-IkYoUqXlIlNmVtOc64dZXEwXYrha_HVVkzmtFs7p2rOQjdU5JTQsXjPteDyhmhRU5ZThi_QAtaV03GKK8v0YKQosyqmpXX6CaEPUlVU7ZA-42bXO-2M3ZTtIP9UdG6ETuDt-AGiN5q1fczHt3Y2xGUxyH6g44HDwG3KkCHk1yl7job7RHwbp7AQ69CtNrGGUfQu9F-H-AWXRnVB7j720v09fqyWb1n68-3j9XzOtO8ETEDLURhlGHAWA2kAdG2nBmjK0VJWZScqIoXJg3XNajK6LZVRFSt4U1ViZov0cP57uRdig1RDjZo6Hs1gjsESUXDeCHKokhSepZq70LwYOTk7aD8LCmRJ65yLxNXeeIqKZOJa_I8nT2Qfjha8DJoC6OGznrQUXbO_uP-BQI-g60</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Luo, Yangjun</creator><creator>Wang, Michael Yu</creator><creator>Kang, Zhan</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150401</creationdate><title>Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique</title><author>Luo, Yangjun ; Wang, Michael Yu ; Kang, Zhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-ec664faf2e228e09e6bb32ffc7a1054530a734f7343c8ea7fcbba067bf3977683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Additives</topic><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Geometrical nonlinearity</topic><topic>Hyperelastic material</topic><topic>Instability</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Sensitivity analysis</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Yangjun</creatorcontrib><creatorcontrib>Wang, Michael Yu</creatorcontrib><creatorcontrib>Kang, Zhan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Yangjun</au><au>Wang, Michael Yu</au><au>Kang, Zhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>286</volume><spage>422</spage><epage>441</epage><pages>422-441</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>This paper presents a simple but effective additive hyperelasticity technique to circumvent numerical difficulties in solving the material density-based topology optimization of elastic structures undergoing large displacements. By adding a special hyperelastic material to the design domain, excessive distortion and numerical instability occurred in the low-density or intermediate-density elements are thus effectively alleviated during the optimization process. The properties of the additional hyperelastic material are established based on a new interpolation scheme, which allows the nonlinear mechanical behaviour of the remodelled structure to achieve an acceptable approximation to the original structure. In conjunction with the adjoint variable scheme for sensitivity analysis, the topology optimization problem is solved by a gradient-based mathematical programming algorithm. Numerical examples are given to demonstrate the effectiveness of the proposed method.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2014.12.023</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2015-04, Vol.286, p.422-441 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692346544 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Additives Algorithms Computer simulation Geometrical nonlinearity Hyperelastic material Instability Mathematical models Nonlinearity Sensitivity analysis Topology optimization |
title | Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A36%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology%20optimization%20of%20geometrically%20nonlinear%20structures%20based%20on%20an%20additive%20hyperelasticity%20technique&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Luo,%20Yangjun&rft.date=2015-04-01&rft.volume=286&rft.spage=422&rft.epage=441&rft.pages=422-441&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2014.12.023&rft_dat=%3Cproquest_cross%3E1692346544%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692346544&rft_id=info:pmid/&rft_els_id=S0045782514005027&rfr_iscdi=true |