Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique

This paper presents a simple but effective additive hyperelasticity technique to circumvent numerical difficulties in solving the material density-based topology optimization of elastic structures undergoing large displacements. By adding a special hyperelastic material to the design domain, excessi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2015-04, Vol.286, p.422-441
Hauptverfasser: Luo, Yangjun, Wang, Michael Yu, Kang, Zhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 441
container_issue
container_start_page 422
container_title Computer methods in applied mechanics and engineering
container_volume 286
creator Luo, Yangjun
Wang, Michael Yu
Kang, Zhan
description This paper presents a simple but effective additive hyperelasticity technique to circumvent numerical difficulties in solving the material density-based topology optimization of elastic structures undergoing large displacements. By adding a special hyperelastic material to the design domain, excessive distortion and numerical instability occurred in the low-density or intermediate-density elements are thus effectively alleviated during the optimization process. The properties of the additional hyperelastic material are established based on a new interpolation scheme, which allows the nonlinear mechanical behaviour of the remodelled structure to achieve an acceptable approximation to the original structure. In conjunction with the adjoint variable scheme for sensitivity analysis, the topology optimization problem is solved by a gradient-based mathematical programming algorithm. Numerical examples are given to demonstrate the effectiveness of the proposed method.
doi_str_mv 10.1016/j.cma.2014.12.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692346544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782514005027</els_id><sourcerecordid>1692346544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-ec664faf2e228e09e6bb32ffc7a1054530a734f7343c8ea7fcbba067bf3977683</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAey8ZJPgR-IkYoUqXlIlNmVtOc64dZXEwXYrha_HVVkzmtFs7p2rOQjdU5JTQsXjPteDyhmhRU5ZThi_QAtaV03GKK8v0YKQosyqmpXX6CaEPUlVU7ZA-42bXO-2M3ZTtIP9UdG6ETuDt-AGiN5q1fczHt3Y2xGUxyH6g44HDwG3KkCHk1yl7job7RHwbp7AQ69CtNrGGUfQu9F-H-AWXRnVB7j720v09fqyWb1n68-3j9XzOtO8ETEDLURhlGHAWA2kAdG2nBmjK0VJWZScqIoXJg3XNajK6LZVRFSt4U1ViZov0cP57uRdig1RDjZo6Hs1gjsESUXDeCHKokhSepZq70LwYOTk7aD8LCmRJ65yLxNXeeIqKZOJa_I8nT2Qfjha8DJoC6OGznrQUXbO_uP-BQI-g60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692346544</pqid></control><display><type>article</type><title>Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Luo, Yangjun ; Wang, Michael Yu ; Kang, Zhan</creator><creatorcontrib>Luo, Yangjun ; Wang, Michael Yu ; Kang, Zhan</creatorcontrib><description>This paper presents a simple but effective additive hyperelasticity technique to circumvent numerical difficulties in solving the material density-based topology optimization of elastic structures undergoing large displacements. By adding a special hyperelastic material to the design domain, excessive distortion and numerical instability occurred in the low-density or intermediate-density elements are thus effectively alleviated during the optimization process. The properties of the additional hyperelastic material are established based on a new interpolation scheme, which allows the nonlinear mechanical behaviour of the remodelled structure to achieve an acceptable approximation to the original structure. In conjunction with the adjoint variable scheme for sensitivity analysis, the topology optimization problem is solved by a gradient-based mathematical programming algorithm. Numerical examples are given to demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2014.12.023</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Additives ; Algorithms ; Computer simulation ; Geometrical nonlinearity ; Hyperelastic material ; Instability ; Mathematical models ; Nonlinearity ; Sensitivity analysis ; Topology optimization</subject><ispartof>Computer methods in applied mechanics and engineering, 2015-04, Vol.286, p.422-441</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-ec664faf2e228e09e6bb32ffc7a1054530a734f7343c8ea7fcbba067bf3977683</citedby><cites>FETCH-LOGICAL-c396t-ec664faf2e228e09e6bb32ffc7a1054530a734f7343c8ea7fcbba067bf3977683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782514005027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Luo, Yangjun</creatorcontrib><creatorcontrib>Wang, Michael Yu</creatorcontrib><creatorcontrib>Kang, Zhan</creatorcontrib><title>Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique</title><title>Computer methods in applied mechanics and engineering</title><description>This paper presents a simple but effective additive hyperelasticity technique to circumvent numerical difficulties in solving the material density-based topology optimization of elastic structures undergoing large displacements. By adding a special hyperelastic material to the design domain, excessive distortion and numerical instability occurred in the low-density or intermediate-density elements are thus effectively alleviated during the optimization process. The properties of the additional hyperelastic material are established based on a new interpolation scheme, which allows the nonlinear mechanical behaviour of the remodelled structure to achieve an acceptable approximation to the original structure. In conjunction with the adjoint variable scheme for sensitivity analysis, the topology optimization problem is solved by a gradient-based mathematical programming algorithm. Numerical examples are given to demonstrate the effectiveness of the proposed method.</description><subject>Additives</subject><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Geometrical nonlinearity</subject><subject>Hyperelastic material</subject><subject>Instability</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Sensitivity analysis</subject><subject>Topology optimization</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAey8ZJPgR-IkYoUqXlIlNmVtOc64dZXEwXYrha_HVVkzmtFs7p2rOQjdU5JTQsXjPteDyhmhRU5ZThi_QAtaV03GKK8v0YKQosyqmpXX6CaEPUlVU7ZA-42bXO-2M3ZTtIP9UdG6ETuDt-AGiN5q1fczHt3Y2xGUxyH6g44HDwG3KkCHk1yl7job7RHwbp7AQ69CtNrGGUfQu9F-H-AWXRnVB7j720v09fqyWb1n68-3j9XzOtO8ETEDLURhlGHAWA2kAdG2nBmjK0VJWZScqIoXJg3XNajK6LZVRFSt4U1ViZov0cP57uRdig1RDjZo6Hs1gjsESUXDeCHKokhSepZq70LwYOTk7aD8LCmRJ65yLxNXeeIqKZOJa_I8nT2Qfjha8DJoC6OGznrQUXbO_uP-BQI-g60</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Luo, Yangjun</creator><creator>Wang, Michael Yu</creator><creator>Kang, Zhan</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150401</creationdate><title>Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique</title><author>Luo, Yangjun ; Wang, Michael Yu ; Kang, Zhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-ec664faf2e228e09e6bb32ffc7a1054530a734f7343c8ea7fcbba067bf3977683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Additives</topic><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Geometrical nonlinearity</topic><topic>Hyperelastic material</topic><topic>Instability</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Sensitivity analysis</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Yangjun</creatorcontrib><creatorcontrib>Wang, Michael Yu</creatorcontrib><creatorcontrib>Kang, Zhan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Yangjun</au><au>Wang, Michael Yu</au><au>Kang, Zhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>286</volume><spage>422</spage><epage>441</epage><pages>422-441</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>This paper presents a simple but effective additive hyperelasticity technique to circumvent numerical difficulties in solving the material density-based topology optimization of elastic structures undergoing large displacements. By adding a special hyperelastic material to the design domain, excessive distortion and numerical instability occurred in the low-density or intermediate-density elements are thus effectively alleviated during the optimization process. The properties of the additional hyperelastic material are established based on a new interpolation scheme, which allows the nonlinear mechanical behaviour of the remodelled structure to achieve an acceptable approximation to the original structure. In conjunction with the adjoint variable scheme for sensitivity analysis, the topology optimization problem is solved by a gradient-based mathematical programming algorithm. Numerical examples are given to demonstrate the effectiveness of the proposed method.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2014.12.023</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2015-04, Vol.286, p.422-441
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_1692346544
source Elsevier ScienceDirect Journals Complete
subjects Additives
Algorithms
Computer simulation
Geometrical nonlinearity
Hyperelastic material
Instability
Mathematical models
Nonlinearity
Sensitivity analysis
Topology optimization
title Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A36%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology%20optimization%20of%20geometrically%20nonlinear%20structures%20based%20on%20an%20additive%20hyperelasticity%20technique&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Luo,%20Yangjun&rft.date=2015-04-01&rft.volume=286&rft.spage=422&rft.epage=441&rft.pages=422-441&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2014.12.023&rft_dat=%3Cproquest_cross%3E1692346544%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692346544&rft_id=info:pmid/&rft_els_id=S0045782514005027&rfr_iscdi=true