Real-Time NMR Monitoring of Protein-Folding Kinetics by a Recycle Flow System for Temperature Jump

An NMR method was developed that allows for real-time monitoring of reactions (on the order of seconds) induced by a temperature jump. In a recycle flow system, heating and cooling baths were integrated, with the latter inside the NMR probe. A refolding reaction of ribonuclease A was triggered by ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2013-10, Vol.85 (20), p.9439-9443
Hauptverfasser: Yamasaki, Kazuhiko, Obara, Yuji, Hasegawa, Manabu, Tanaka, Hideki, Yamasaki, Tomoko, Wakuda, Tsuyoshi, Okada, Michiya, Kohzuma, Takamitsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9443
container_issue 20
container_start_page 9439
container_title Analytical chemistry (Washington)
container_volume 85
creator Yamasaki, Kazuhiko
Obara, Yuji
Hasegawa, Manabu
Tanaka, Hideki
Yamasaki, Tomoko
Wakuda, Tsuyoshi
Okada, Michiya
Kohzuma, Takamitsu
description An NMR method was developed that allows for real-time monitoring of reactions (on the order of seconds) induced by a temperature jump. In a recycle flow system, heating and cooling baths were integrated, with the latter inside the NMR probe. A refolding reaction of ribonuclease A was triggered by rapid cooling and monitored by a series of NMR measurements over 12 s. Data were processed by principal component analysis, in which a factor related to the structural change with an exponential rate constant of 0.2–0.7 s–1 was successfully separated from factors related to baseline instability and/or noise. Temperature dependency of the rate constant revealed the entropy-driven formation of the transition state of the refolding reaction.
doi_str_mv 10.1021/ac401579e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692345884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692345884</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-6ade0932c4c740b0883980d67ec5a06424ca4c42b3443009b48f223a76d442f73</originalsourceid><addsrcrecordid>eNqF0U1LxDAQBuAgiq4fB_-ABETQQ3XysWl6FHH9XJV1PZc0nUqlbdakRfbfW91VRA-eBoaHdxheQnYZHDPg7MRYCWwYJ7hCBmzIIVJa81UyAAAR8Rhgg2yG8ALAGDC1Tja4BK6lEAOSTdBU0bSskd6NJ3TsmrJ1vmyeqSvog3ctlk00clX-sbopG2xLG2g2p4ZO0M5thXRUuTf6OA8t1rRwnk6xnqE3beeRXnf1bJusFaYKuLOcW-RpdD49u4xu7y-uzk5vIyNi1UbK5AiJ4FbaWEIGWotEQ65itEMDSnJpjbSSZ0JKAZBkUhecCxOrXEpexGKLHC5yZ969dhjatC6DxaoyDboupEwlXMih7h__l_YnJNM6SXq6_4u-uM43_SOfSitIGO_V0UJZ70LwWKQzX9bGz1MG6UdH6XdHvd1bJnZZjfm3_CqlBwcLYGz4ce1P0Dv725SN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443860912</pqid></control><display><type>article</type><title>Real-Time NMR Monitoring of Protein-Folding Kinetics by a Recycle Flow System for Temperature Jump</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Yamasaki, Kazuhiko ; Obara, Yuji ; Hasegawa, Manabu ; Tanaka, Hideki ; Yamasaki, Tomoko ; Wakuda, Tsuyoshi ; Okada, Michiya ; Kohzuma, Takamitsu</creator><creatorcontrib>Yamasaki, Kazuhiko ; Obara, Yuji ; Hasegawa, Manabu ; Tanaka, Hideki ; Yamasaki, Tomoko ; Wakuda, Tsuyoshi ; Okada, Michiya ; Kohzuma, Takamitsu</creatorcontrib><description>An NMR method was developed that allows for real-time monitoring of reactions (on the order of seconds) induced by a temperature jump. In a recycle flow system, heating and cooling baths were integrated, with the latter inside the NMR probe. A refolding reaction of ribonuclease A was triggered by rapid cooling and monitored by a series of NMR measurements over 12 s. Data were processed by principal component analysis, in which a factor related to the structural change with an exponential rate constant of 0.2–0.7 s–1 was successfully separated from factors related to baseline instability and/or noise. Temperature dependency of the rate constant revealed the entropy-driven formation of the transition state of the refolding reaction.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac401579e</identifier><identifier>PMID: 24028433</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Cattle ; Cooling systems ; Entropy ; Heating ; Instability ; Kinetics ; Magnetic Resonance Spectroscopy - methods ; Monitoring ; NMR ; Nuclear magnetic resonance ; Principal Component Analysis ; Principal components analysis ; Protein Folding ; Rate constants ; Reaction kinetics ; Real time ; Ribonuclease, Pancreatic - chemistry ; Symbols ; Temperature ; Temperature effects ; Time Factors</subject><ispartof>Analytical chemistry (Washington), 2013-10, Vol.85 (20), p.9439-9443</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 15, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-6ade0932c4c740b0883980d67ec5a06424ca4c42b3443009b48f223a76d442f73</citedby><cites>FETCH-LOGICAL-a376t-6ade0932c4c740b0883980d67ec5a06424ca4c42b3443009b48f223a76d442f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac401579e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac401579e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24028433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamasaki, Kazuhiko</creatorcontrib><creatorcontrib>Obara, Yuji</creatorcontrib><creatorcontrib>Hasegawa, Manabu</creatorcontrib><creatorcontrib>Tanaka, Hideki</creatorcontrib><creatorcontrib>Yamasaki, Tomoko</creatorcontrib><creatorcontrib>Wakuda, Tsuyoshi</creatorcontrib><creatorcontrib>Okada, Michiya</creatorcontrib><creatorcontrib>Kohzuma, Takamitsu</creatorcontrib><title>Real-Time NMR Monitoring of Protein-Folding Kinetics by a Recycle Flow System for Temperature Jump</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>An NMR method was developed that allows for real-time monitoring of reactions (on the order of seconds) induced by a temperature jump. In a recycle flow system, heating and cooling baths were integrated, with the latter inside the NMR probe. A refolding reaction of ribonuclease A was triggered by rapid cooling and monitored by a series of NMR measurements over 12 s. Data were processed by principal component analysis, in which a factor related to the structural change with an exponential rate constant of 0.2–0.7 s–1 was successfully separated from factors related to baseline instability and/or noise. Temperature dependency of the rate constant revealed the entropy-driven formation of the transition state of the refolding reaction.</description><subject>Animals</subject><subject>Cattle</subject><subject>Cooling systems</subject><subject>Entropy</subject><subject>Heating</subject><subject>Instability</subject><subject>Kinetics</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Monitoring</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Protein Folding</subject><subject>Rate constants</subject><subject>Reaction kinetics</subject><subject>Real time</subject><subject>Ribonuclease, Pancreatic - chemistry</subject><subject>Symbols</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Time Factors</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1LxDAQBuAgiq4fB_-ABETQQ3XysWl6FHH9XJV1PZc0nUqlbdakRfbfW91VRA-eBoaHdxheQnYZHDPg7MRYCWwYJ7hCBmzIIVJa81UyAAAR8Rhgg2yG8ALAGDC1Tja4BK6lEAOSTdBU0bSskd6NJ3TsmrJ1vmyeqSvog3ctlk00clX-sbopG2xLG2g2p4ZO0M5thXRUuTf6OA8t1rRwnk6xnqE3beeRXnf1bJusFaYKuLOcW-RpdD49u4xu7y-uzk5vIyNi1UbK5AiJ4FbaWEIGWotEQ65itEMDSnJpjbSSZ0JKAZBkUhecCxOrXEpexGKLHC5yZ969dhjatC6DxaoyDboupEwlXMih7h__l_YnJNM6SXq6_4u-uM43_SOfSitIGO_V0UJZ70LwWKQzX9bGz1MG6UdH6XdHvd1bJnZZjfm3_CqlBwcLYGz4ce1P0Dv725SN</recordid><startdate>20131015</startdate><enddate>20131015</enddate><creator>Yamasaki, Kazuhiko</creator><creator>Obara, Yuji</creator><creator>Hasegawa, Manabu</creator><creator>Tanaka, Hideki</creator><creator>Yamasaki, Tomoko</creator><creator>Wakuda, Tsuyoshi</creator><creator>Okada, Michiya</creator><creator>Kohzuma, Takamitsu</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20131015</creationdate><title>Real-Time NMR Monitoring of Protein-Folding Kinetics by a Recycle Flow System for Temperature Jump</title><author>Yamasaki, Kazuhiko ; Obara, Yuji ; Hasegawa, Manabu ; Tanaka, Hideki ; Yamasaki, Tomoko ; Wakuda, Tsuyoshi ; Okada, Michiya ; Kohzuma, Takamitsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-6ade0932c4c740b0883980d67ec5a06424ca4c42b3443009b48f223a76d442f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Cattle</topic><topic>Cooling systems</topic><topic>Entropy</topic><topic>Heating</topic><topic>Instability</topic><topic>Kinetics</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Monitoring</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Protein Folding</topic><topic>Rate constants</topic><topic>Reaction kinetics</topic><topic>Real time</topic><topic>Ribonuclease, Pancreatic - chemistry</topic><topic>Symbols</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamasaki, Kazuhiko</creatorcontrib><creatorcontrib>Obara, Yuji</creatorcontrib><creatorcontrib>Hasegawa, Manabu</creatorcontrib><creatorcontrib>Tanaka, Hideki</creatorcontrib><creatorcontrib>Yamasaki, Tomoko</creatorcontrib><creatorcontrib>Wakuda, Tsuyoshi</creatorcontrib><creatorcontrib>Okada, Michiya</creatorcontrib><creatorcontrib>Kohzuma, Takamitsu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamasaki, Kazuhiko</au><au>Obara, Yuji</au><au>Hasegawa, Manabu</au><au>Tanaka, Hideki</au><au>Yamasaki, Tomoko</au><au>Wakuda, Tsuyoshi</au><au>Okada, Michiya</au><au>Kohzuma, Takamitsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time NMR Monitoring of Protein-Folding Kinetics by a Recycle Flow System for Temperature Jump</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2013-10-15</date><risdate>2013</risdate><volume>85</volume><issue>20</issue><spage>9439</spage><epage>9443</epage><pages>9439-9443</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>An NMR method was developed that allows for real-time monitoring of reactions (on the order of seconds) induced by a temperature jump. In a recycle flow system, heating and cooling baths were integrated, with the latter inside the NMR probe. A refolding reaction of ribonuclease A was triggered by rapid cooling and monitored by a series of NMR measurements over 12 s. Data were processed by principal component analysis, in which a factor related to the structural change with an exponential rate constant of 0.2–0.7 s–1 was successfully separated from factors related to baseline instability and/or noise. Temperature dependency of the rate constant revealed the entropy-driven formation of the transition state of the refolding reaction.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24028433</pmid><doi>10.1021/ac401579e</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2013-10, Vol.85 (20), p.9439-9443
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1692345884
source MEDLINE; American Chemical Society Journals
subjects Animals
Cattle
Cooling systems
Entropy
Heating
Instability
Kinetics
Magnetic Resonance Spectroscopy - methods
Monitoring
NMR
Nuclear magnetic resonance
Principal Component Analysis
Principal components analysis
Protein Folding
Rate constants
Reaction kinetics
Real time
Ribonuclease, Pancreatic - chemistry
Symbols
Temperature
Temperature effects
Time Factors
title Real-Time NMR Monitoring of Protein-Folding Kinetics by a Recycle Flow System for Temperature Jump
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20NMR%20Monitoring%20of%20Protein-Folding%20Kinetics%20by%20a%20Recycle%20Flow%20System%20for%20Temperature%20Jump&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Yamasaki,%20Kazuhiko&rft.date=2013-10-15&rft.volume=85&rft.issue=20&rft.spage=9439&rft.epage=9443&rft.pages=9439-9443&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac401579e&rft_dat=%3Cproquest_cross%3E1692345884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443860912&rft_id=info:pmid/24028433&rfr_iscdi=true