Characteristics of thermal convection in a rectangular channel with an inner cold circular cylinder
Based on three-dimensional numerical simulations, results are presented for natural convection in a rectangular channel with an inner cold circular cylinder. The Prandtl number is 0.7 and the Rayleigh number is changed in the range of 1×103 to 1×106. The rectangular channel is heated from the bottom...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2015-05, Vol.84, p.955-973 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 973 |
---|---|
container_issue | |
container_start_page | 955 |
container_title | International journal of heat and mass transfer |
container_volume | 84 |
creator | Choi, Changyoung Ha, Man Yeong Park, Yong Gap |
description | Based on three-dimensional numerical simulations, results are presented for natural convection in a rectangular channel with an inner cold circular cylinder. The Prandtl number is 0.7 and the Rayleigh number is changed in the range of 1×103 to 1×106. The rectangular channel is heated from the bottom wall of the channel and cooled from the top wall. The adiabatic thermal boundary condition is implemented at the vertical side walls of the rectangular channel. A low-temperature isothermal boundary condition is applied at the surface of the cylinder. The radius of the inner circular cylinder is changed in the range of 0.1–0.4L, where L is the height of the rectangular channel. By changing the radius of the cylinder, we investigate the effect of the inner cold circular cylinder on thermal convection and heat transfer in the space between the cylinder and the rectangular channel. With respect to the radius and Rayleigh number of the cylinder, the thermal and flow field is categorized into six regimes: steady symmetric two-dimensional convection, steady asymmetric two-dimensional convection, steady symmetric three-dimensional convection, steady asymmetric three-dimensional convection, time periodic convection, and aperiodic convection. The map of thermal and flow regimes is presented as a function of the radius and Rayleigh number of the cylinder. This paper presents detailed analysis results for the isotherms, vortical structure, boundary layer thicknesses, and Nusselt numbers and includes a comparison of the results for a rectangular channel without an inner cylinder. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2015.01.089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692345627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931015000976</els_id><sourcerecordid>1692345627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d78567b6c85bee586765d941f82bdf753bdd88f432d4c286f9a8a75be1699023</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD152k2DnYTs7UMVTldh0b7n2hDhKnGK7Rf17HJUdG1ajO3N0pTkIrSjJKaHsvs9t34GKowoheuVCCz4vCK1zQnMimgu0oII3WUFFc4kWhFCeNSUl1-gmhH6OpGILpNed8kpH8DZEqwOeWhw78KMasJ7cEXS0k8PWYYV9Csp9Hgblse6UczDgbxs7rGbAQdpOg8Haen1mToN1BvwtumrVEODudy7R9vlpu37NNh8vb-vHTaZLXsfMcFEzvmNa1DuAWjDOatNUtBXFzrS8LnfGCNFWZWEqXQjWNkoonljKmoYU5RKtzrV7P30dIEQ52qBhGJSD6RBkwoqyqlnBE_pwRrWfQvDQyr23o_InSYmc9cpe_tUrZ72SUJn0por3cwWkj442XYO24DQYO3uSZrL_L_sBHsqSKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692345627</pqid></control><display><type>article</type><title>Characteristics of thermal convection in a rectangular channel with an inner cold circular cylinder</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Choi, Changyoung ; Ha, Man Yeong ; Park, Yong Gap</creator><creatorcontrib>Choi, Changyoung ; Ha, Man Yeong ; Park, Yong Gap</creatorcontrib><description>Based on three-dimensional numerical simulations, results are presented for natural convection in a rectangular channel with an inner cold circular cylinder. The Prandtl number is 0.7 and the Rayleigh number is changed in the range of 1×103 to 1×106. The rectangular channel is heated from the bottom wall of the channel and cooled from the top wall. The adiabatic thermal boundary condition is implemented at the vertical side walls of the rectangular channel. A low-temperature isothermal boundary condition is applied at the surface of the cylinder. The radius of the inner circular cylinder is changed in the range of 0.1–0.4L, where L is the height of the rectangular channel. By changing the radius of the cylinder, we investigate the effect of the inner cold circular cylinder on thermal convection and heat transfer in the space between the cylinder and the rectangular channel. With respect to the radius and Rayleigh number of the cylinder, the thermal and flow field is categorized into six regimes: steady symmetric two-dimensional convection, steady asymmetric two-dimensional convection, steady symmetric three-dimensional convection, steady asymmetric three-dimensional convection, time periodic convection, and aperiodic convection. The map of thermal and flow regimes is presented as a function of the radius and Rayleigh number of the cylinder. This paper presents detailed analysis results for the isotherms, vortical structure, boundary layer thicknesses, and Nusselt numbers and includes a comparison of the results for a rectangular channel without an inner cylinder.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2015.01.089</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Asymmetry ; Channels ; Circular cylinders ; Cold inner circular cylinder ; Convection ; Cylinders ; Effect of cylinder size ; Mathematical models ; Natural convection ; Rayleigh number ; Rectangular channel ; Thermal and flow regime map ; Three dimensional ; Walls</subject><ispartof>International journal of heat and mass transfer, 2015-05, Vol.84, p.955-973</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d78567b6c85bee586765d941f82bdf753bdd88f432d4c286f9a8a75be1699023</citedby><cites>FETCH-LOGICAL-c375t-d78567b6c85bee586765d941f82bdf753bdd88f432d4c286f9a8a75be1699023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.01.089$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Choi, Changyoung</creatorcontrib><creatorcontrib>Ha, Man Yeong</creatorcontrib><creatorcontrib>Park, Yong Gap</creatorcontrib><title>Characteristics of thermal convection in a rectangular channel with an inner cold circular cylinder</title><title>International journal of heat and mass transfer</title><description>Based on three-dimensional numerical simulations, results are presented for natural convection in a rectangular channel with an inner cold circular cylinder. The Prandtl number is 0.7 and the Rayleigh number is changed in the range of 1×103 to 1×106. The rectangular channel is heated from the bottom wall of the channel and cooled from the top wall. The adiabatic thermal boundary condition is implemented at the vertical side walls of the rectangular channel. A low-temperature isothermal boundary condition is applied at the surface of the cylinder. The radius of the inner circular cylinder is changed in the range of 0.1–0.4L, where L is the height of the rectangular channel. By changing the radius of the cylinder, we investigate the effect of the inner cold circular cylinder on thermal convection and heat transfer in the space between the cylinder and the rectangular channel. With respect to the radius and Rayleigh number of the cylinder, the thermal and flow field is categorized into six regimes: steady symmetric two-dimensional convection, steady asymmetric two-dimensional convection, steady symmetric three-dimensional convection, steady asymmetric three-dimensional convection, time periodic convection, and aperiodic convection. The map of thermal and flow regimes is presented as a function of the radius and Rayleigh number of the cylinder. This paper presents detailed analysis results for the isotherms, vortical structure, boundary layer thicknesses, and Nusselt numbers and includes a comparison of the results for a rectangular channel without an inner cylinder.</description><subject>Asymmetry</subject><subject>Channels</subject><subject>Circular cylinders</subject><subject>Cold inner circular cylinder</subject><subject>Convection</subject><subject>Cylinders</subject><subject>Effect of cylinder size</subject><subject>Mathematical models</subject><subject>Natural convection</subject><subject>Rayleigh number</subject><subject>Rectangular channel</subject><subject>Thermal and flow regime map</subject><subject>Three dimensional</subject><subject>Walls</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwD152k2DnYTs7UMVTldh0b7n2hDhKnGK7Rf17HJUdG1ajO3N0pTkIrSjJKaHsvs9t34GKowoheuVCCz4vCK1zQnMimgu0oII3WUFFc4kWhFCeNSUl1-gmhH6OpGILpNed8kpH8DZEqwOeWhw78KMasJ7cEXS0k8PWYYV9Csp9Hgblse6UczDgbxs7rGbAQdpOg8Haen1mToN1BvwtumrVEODudy7R9vlpu37NNh8vb-vHTaZLXsfMcFEzvmNa1DuAWjDOatNUtBXFzrS8LnfGCNFWZWEqXQjWNkoonljKmoYU5RKtzrV7P30dIEQ52qBhGJSD6RBkwoqyqlnBE_pwRrWfQvDQyr23o_InSYmc9cpe_tUrZ72SUJn0por3cwWkj442XYO24DQYO3uSZrL_L_sBHsqSKg</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Choi, Changyoung</creator><creator>Ha, Man Yeong</creator><creator>Park, Yong Gap</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150501</creationdate><title>Characteristics of thermal convection in a rectangular channel with an inner cold circular cylinder</title><author>Choi, Changyoung ; Ha, Man Yeong ; Park, Yong Gap</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d78567b6c85bee586765d941f82bdf753bdd88f432d4c286f9a8a75be1699023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Asymmetry</topic><topic>Channels</topic><topic>Circular cylinders</topic><topic>Cold inner circular cylinder</topic><topic>Convection</topic><topic>Cylinders</topic><topic>Effect of cylinder size</topic><topic>Mathematical models</topic><topic>Natural convection</topic><topic>Rayleigh number</topic><topic>Rectangular channel</topic><topic>Thermal and flow regime map</topic><topic>Three dimensional</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Changyoung</creatorcontrib><creatorcontrib>Ha, Man Yeong</creatorcontrib><creatorcontrib>Park, Yong Gap</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Changyoung</au><au>Ha, Man Yeong</au><au>Park, Yong Gap</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristics of thermal convection in a rectangular channel with an inner cold circular cylinder</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>84</volume><spage>955</spage><epage>973</epage><pages>955-973</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>Based on three-dimensional numerical simulations, results are presented for natural convection in a rectangular channel with an inner cold circular cylinder. The Prandtl number is 0.7 and the Rayleigh number is changed in the range of 1×103 to 1×106. The rectangular channel is heated from the bottom wall of the channel and cooled from the top wall. The adiabatic thermal boundary condition is implemented at the vertical side walls of the rectangular channel. A low-temperature isothermal boundary condition is applied at the surface of the cylinder. The radius of the inner circular cylinder is changed in the range of 0.1–0.4L, where L is the height of the rectangular channel. By changing the radius of the cylinder, we investigate the effect of the inner cold circular cylinder on thermal convection and heat transfer in the space between the cylinder and the rectangular channel. With respect to the radius and Rayleigh number of the cylinder, the thermal and flow field is categorized into six regimes: steady symmetric two-dimensional convection, steady asymmetric two-dimensional convection, steady symmetric three-dimensional convection, steady asymmetric three-dimensional convection, time periodic convection, and aperiodic convection. The map of thermal and flow regimes is presented as a function of the radius and Rayleigh number of the cylinder. This paper presents detailed analysis results for the isotherms, vortical structure, boundary layer thicknesses, and Nusselt numbers and includes a comparison of the results for a rectangular channel without an inner cylinder.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2015.01.089</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2015-05, Vol.84, p.955-973 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692345627 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Asymmetry Channels Circular cylinders Cold inner circular cylinder Convection Cylinders Effect of cylinder size Mathematical models Natural convection Rayleigh number Rectangular channel Thermal and flow regime map Three dimensional Walls |
title | Characteristics of thermal convection in a rectangular channel with an inner cold circular cylinder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristics%20of%20thermal%20convection%20in%20a%20rectangular%20channel%20with%20an%20inner%20cold%20circular%20cylinder&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Choi,%20Changyoung&rft.date=2015-05-01&rft.volume=84&rft.spage=955&rft.epage=973&rft.pages=955-973&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2015.01.089&rft_dat=%3Cproquest_cross%3E1692345627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692345627&rft_id=info:pmid/&rft_els_id=S0017931015000976&rfr_iscdi=true |