Characteristics of thermal convection in a rectangular channel with an inner cold circular cylinder

Based on three-dimensional numerical simulations, results are presented for natural convection in a rectangular channel with an inner cold circular cylinder. The Prandtl number is 0.7 and the Rayleigh number is changed in the range of 1×103 to 1×106. The rectangular channel is heated from the bottom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2015-05, Vol.84, p.955-973
Hauptverfasser: Choi, Changyoung, Ha, Man Yeong, Park, Yong Gap
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 973
container_issue
container_start_page 955
container_title International journal of heat and mass transfer
container_volume 84
creator Choi, Changyoung
Ha, Man Yeong
Park, Yong Gap
description Based on three-dimensional numerical simulations, results are presented for natural convection in a rectangular channel with an inner cold circular cylinder. The Prandtl number is 0.7 and the Rayleigh number is changed in the range of 1×103 to 1×106. The rectangular channel is heated from the bottom wall of the channel and cooled from the top wall. The adiabatic thermal boundary condition is implemented at the vertical side walls of the rectangular channel. A low-temperature isothermal boundary condition is applied at the surface of the cylinder. The radius of the inner circular cylinder is changed in the range of 0.1–0.4L, where L is the height of the rectangular channel. By changing the radius of the cylinder, we investigate the effect of the inner cold circular cylinder on thermal convection and heat transfer in the space between the cylinder and the rectangular channel. With respect to the radius and Rayleigh number of the cylinder, the thermal and flow field is categorized into six regimes: steady symmetric two-dimensional convection, steady asymmetric two-dimensional convection, steady symmetric three-dimensional convection, steady asymmetric three-dimensional convection, time periodic convection, and aperiodic convection. The map of thermal and flow regimes is presented as a function of the radius and Rayleigh number of the cylinder. This paper presents detailed analysis results for the isotherms, vortical structure, boundary layer thicknesses, and Nusselt numbers and includes a comparison of the results for a rectangular channel without an inner cylinder.
doi_str_mv 10.1016/j.ijheatmasstransfer.2015.01.089
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692345627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931015000976</els_id><sourcerecordid>1692345627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d78567b6c85bee586765d941f82bdf753bdd88f432d4c286f9a8a75be1699023</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD152k2DnYTs7UMVTldh0b7n2hDhKnGK7Rf17HJUdG1ajO3N0pTkIrSjJKaHsvs9t34GKowoheuVCCz4vCK1zQnMimgu0oII3WUFFc4kWhFCeNSUl1-gmhH6OpGILpNed8kpH8DZEqwOeWhw78KMasJ7cEXS0k8PWYYV9Csp9Hgblse6UczDgbxs7rGbAQdpOg8Haen1mToN1BvwtumrVEODudy7R9vlpu37NNh8vb-vHTaZLXsfMcFEzvmNa1DuAWjDOatNUtBXFzrS8LnfGCNFWZWEqXQjWNkoonljKmoYU5RKtzrV7P30dIEQ52qBhGJSD6RBkwoqyqlnBE_pwRrWfQvDQyr23o_InSYmc9cpe_tUrZ72SUJn0por3cwWkj442XYO24DQYO3uSZrL_L_sBHsqSKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692345627</pqid></control><display><type>article</type><title>Characteristics of thermal convection in a rectangular channel with an inner cold circular cylinder</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Choi, Changyoung ; Ha, Man Yeong ; Park, Yong Gap</creator><creatorcontrib>Choi, Changyoung ; Ha, Man Yeong ; Park, Yong Gap</creatorcontrib><description>Based on three-dimensional numerical simulations, results are presented for natural convection in a rectangular channel with an inner cold circular cylinder. The Prandtl number is 0.7 and the Rayleigh number is changed in the range of 1×103 to 1×106. The rectangular channel is heated from the bottom wall of the channel and cooled from the top wall. The adiabatic thermal boundary condition is implemented at the vertical side walls of the rectangular channel. A low-temperature isothermal boundary condition is applied at the surface of the cylinder. The radius of the inner circular cylinder is changed in the range of 0.1–0.4L, where L is the height of the rectangular channel. By changing the radius of the cylinder, we investigate the effect of the inner cold circular cylinder on thermal convection and heat transfer in the space between the cylinder and the rectangular channel. With respect to the radius and Rayleigh number of the cylinder, the thermal and flow field is categorized into six regimes: steady symmetric two-dimensional convection, steady asymmetric two-dimensional convection, steady symmetric three-dimensional convection, steady asymmetric three-dimensional convection, time periodic convection, and aperiodic convection. The map of thermal and flow regimes is presented as a function of the radius and Rayleigh number of the cylinder. This paper presents detailed analysis results for the isotherms, vortical structure, boundary layer thicknesses, and Nusselt numbers and includes a comparison of the results for a rectangular channel without an inner cylinder.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2015.01.089</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Asymmetry ; Channels ; Circular cylinders ; Cold inner circular cylinder ; Convection ; Cylinders ; Effect of cylinder size ; Mathematical models ; Natural convection ; Rayleigh number ; Rectangular channel ; Thermal and flow regime map ; Three dimensional ; Walls</subject><ispartof>International journal of heat and mass transfer, 2015-05, Vol.84, p.955-973</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d78567b6c85bee586765d941f82bdf753bdd88f432d4c286f9a8a75be1699023</citedby><cites>FETCH-LOGICAL-c375t-d78567b6c85bee586765d941f82bdf753bdd88f432d4c286f9a8a75be1699023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.01.089$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Choi, Changyoung</creatorcontrib><creatorcontrib>Ha, Man Yeong</creatorcontrib><creatorcontrib>Park, Yong Gap</creatorcontrib><title>Characteristics of thermal convection in a rectangular channel with an inner cold circular cylinder</title><title>International journal of heat and mass transfer</title><description>Based on three-dimensional numerical simulations, results are presented for natural convection in a rectangular channel with an inner cold circular cylinder. The Prandtl number is 0.7 and the Rayleigh number is changed in the range of 1×103 to 1×106. The rectangular channel is heated from the bottom wall of the channel and cooled from the top wall. The adiabatic thermal boundary condition is implemented at the vertical side walls of the rectangular channel. A low-temperature isothermal boundary condition is applied at the surface of the cylinder. The radius of the inner circular cylinder is changed in the range of 0.1–0.4L, where L is the height of the rectangular channel. By changing the radius of the cylinder, we investigate the effect of the inner cold circular cylinder on thermal convection and heat transfer in the space between the cylinder and the rectangular channel. With respect to the radius and Rayleigh number of the cylinder, the thermal and flow field is categorized into six regimes: steady symmetric two-dimensional convection, steady asymmetric two-dimensional convection, steady symmetric three-dimensional convection, steady asymmetric three-dimensional convection, time periodic convection, and aperiodic convection. The map of thermal and flow regimes is presented as a function of the radius and Rayleigh number of the cylinder. This paper presents detailed analysis results for the isotherms, vortical structure, boundary layer thicknesses, and Nusselt numbers and includes a comparison of the results for a rectangular channel without an inner cylinder.</description><subject>Asymmetry</subject><subject>Channels</subject><subject>Circular cylinders</subject><subject>Cold inner circular cylinder</subject><subject>Convection</subject><subject>Cylinders</subject><subject>Effect of cylinder size</subject><subject>Mathematical models</subject><subject>Natural convection</subject><subject>Rayleigh number</subject><subject>Rectangular channel</subject><subject>Thermal and flow regime map</subject><subject>Three dimensional</subject><subject>Walls</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwD152k2DnYTs7UMVTldh0b7n2hDhKnGK7Rf17HJUdG1ajO3N0pTkIrSjJKaHsvs9t34GKowoheuVCCz4vCK1zQnMimgu0oII3WUFFc4kWhFCeNSUl1-gmhH6OpGILpNed8kpH8DZEqwOeWhw78KMasJ7cEXS0k8PWYYV9Csp9Hgblse6UczDgbxs7rGbAQdpOg8Haen1mToN1BvwtumrVEODudy7R9vlpu37NNh8vb-vHTaZLXsfMcFEzvmNa1DuAWjDOatNUtBXFzrS8LnfGCNFWZWEqXQjWNkoonljKmoYU5RKtzrV7P30dIEQ52qBhGJSD6RBkwoqyqlnBE_pwRrWfQvDQyr23o_InSYmc9cpe_tUrZ72SUJn0por3cwWkj442XYO24DQYO3uSZrL_L_sBHsqSKg</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Choi, Changyoung</creator><creator>Ha, Man Yeong</creator><creator>Park, Yong Gap</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150501</creationdate><title>Characteristics of thermal convection in a rectangular channel with an inner cold circular cylinder</title><author>Choi, Changyoung ; Ha, Man Yeong ; Park, Yong Gap</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d78567b6c85bee586765d941f82bdf753bdd88f432d4c286f9a8a75be1699023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Asymmetry</topic><topic>Channels</topic><topic>Circular cylinders</topic><topic>Cold inner circular cylinder</topic><topic>Convection</topic><topic>Cylinders</topic><topic>Effect of cylinder size</topic><topic>Mathematical models</topic><topic>Natural convection</topic><topic>Rayleigh number</topic><topic>Rectangular channel</topic><topic>Thermal and flow regime map</topic><topic>Three dimensional</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Changyoung</creatorcontrib><creatorcontrib>Ha, Man Yeong</creatorcontrib><creatorcontrib>Park, Yong Gap</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Changyoung</au><au>Ha, Man Yeong</au><au>Park, Yong Gap</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristics of thermal convection in a rectangular channel with an inner cold circular cylinder</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>84</volume><spage>955</spage><epage>973</epage><pages>955-973</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>Based on three-dimensional numerical simulations, results are presented for natural convection in a rectangular channel with an inner cold circular cylinder. The Prandtl number is 0.7 and the Rayleigh number is changed in the range of 1×103 to 1×106. The rectangular channel is heated from the bottom wall of the channel and cooled from the top wall. The adiabatic thermal boundary condition is implemented at the vertical side walls of the rectangular channel. A low-temperature isothermal boundary condition is applied at the surface of the cylinder. The radius of the inner circular cylinder is changed in the range of 0.1–0.4L, where L is the height of the rectangular channel. By changing the radius of the cylinder, we investigate the effect of the inner cold circular cylinder on thermal convection and heat transfer in the space between the cylinder and the rectangular channel. With respect to the radius and Rayleigh number of the cylinder, the thermal and flow field is categorized into six regimes: steady symmetric two-dimensional convection, steady asymmetric two-dimensional convection, steady symmetric three-dimensional convection, steady asymmetric three-dimensional convection, time periodic convection, and aperiodic convection. The map of thermal and flow regimes is presented as a function of the radius and Rayleigh number of the cylinder. This paper presents detailed analysis results for the isotherms, vortical structure, boundary layer thicknesses, and Nusselt numbers and includes a comparison of the results for a rectangular channel without an inner cylinder.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2015.01.089</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2015-05, Vol.84, p.955-973
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_1692345627
source Elsevier ScienceDirect Journals Complete
subjects Asymmetry
Channels
Circular cylinders
Cold inner circular cylinder
Convection
Cylinders
Effect of cylinder size
Mathematical models
Natural convection
Rayleigh number
Rectangular channel
Thermal and flow regime map
Three dimensional
Walls
title Characteristics of thermal convection in a rectangular channel with an inner cold circular cylinder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristics%20of%20thermal%20convection%20in%20a%20rectangular%20channel%20with%20an%20inner%20cold%20circular%20cylinder&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Choi,%20Changyoung&rft.date=2015-05-01&rft.volume=84&rft.spage=955&rft.epage=973&rft.pages=955-973&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2015.01.089&rft_dat=%3Cproquest_cross%3E1692345627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692345627&rft_id=info:pmid/&rft_els_id=S0017931015000976&rfr_iscdi=true