Analyzing Refractive Index Profiles of Confined Fluids by Interferometry
This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2014-12, Vol.86 (23), p.11860-11867 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11867 |
---|---|
container_issue | 23 |
container_start_page | 11860 |
container_title | Analytical chemistry (Washington) |
container_volume | 86 |
creator | Kienle, Daniel F. Kuhl, Tonya L. |
description | This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force apparatus (SFA). The technique does not require contacting or confining the fluid or film. By analyzing interferometry data taken at many intersurface separation distances out to at least 300 nm, the properties of a film can be quantitatively determined. The film can consist of material deposited on the surface, like a polymer brush, or variation in a fluid’s refractive index near a surface resulting from, for example, a concentration gradient, depletion in density, or surface roughness. The method is demonstrated with aqueous polyethylenimine (PEI) adsorbed onto mica substrates, which has a large concentration and therefore refractive index gradient near the mica surface. The PEI layer thickness determined by the proposed method is consistent with the thickness measured by conventional SFA methods. Additionally, a thorough investigation of the effects of random and systematic error in SFA data analysis and modeling via simulations of interferometry is described in detail. |
doi_str_mv | 10.1021/ac503469x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692342091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3517627401</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-674a2da1dd8da3347f5b0dddc2645aeb612c5cce773cceaae4ebe38e4c7392063</originalsourceid><addsrcrecordid>eNqN0U1Lw0AQBuBFFFurB_-ABETQQ3T2I7vNsRRrCwVF9Bw2uxNJSZO6m0jjrzeltYhevMxcHt6Bdwg5p3BLgdE7bSLgQsbrA9KnEYNQDofskPQBgIdMAfTIifcLAEqBymPSYxGXkVLQJ9NRqYv2My_fgmfMnDZ1_oHBrLS4Dp5cleUF-qDKgnFVZnmJNpgUTW59kLYdqtFl6Kol1q49JUeZLjye7faAvE7uX8bTcP74MBuP5qEWKq5DqYRmVlNrh1ZzLlQWpWCtNUyKSGMqKTORMagU76bWKDBFPkRhFI8ZSD4g19vclaveG_R1ssy9waLQJVaNT6iMGRcMYvoPyuI44kxARy9_0UXVuK6ajeKMS9kV16mbrTKu8t5hlqxcvtSuTSgkm08k-0909mKX2KRLtHv5XX0HrrZAG__j2p-gL_8-jpY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1632366016</pqid></control><display><type>article</type><title>Analyzing Refractive Index Profiles of Confined Fluids by Interferometry</title><source>American Chemical Society Journals</source><creator>Kienle, Daniel F. ; Kuhl, Tonya L.</creator><creatorcontrib>Kienle, Daniel F. ; Kuhl, Tonya L.</creatorcontrib><description>This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force apparatus (SFA). The technique does not require contacting or confining the fluid or film. By analyzing interferometry data taken at many intersurface separation distances out to at least 300 nm, the properties of a film can be quantitatively determined. The film can consist of material deposited on the surface, like a polymer brush, or variation in a fluid’s refractive index near a surface resulting from, for example, a concentration gradient, depletion in density, or surface roughness. The method is demonstrated with aqueous polyethylenimine (PEI) adsorbed onto mica substrates, which has a large concentration and therefore refractive index gradient near the mica surface. The PEI layer thickness determined by the proposed method is consistent with the thickness measured by conventional SFA methods. Additionally, a thorough investigation of the effects of random and systematic error in SFA data analysis and modeling via simulations of interferometry is described in detail.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac503469x</identifier><identifier>PMID: 25365770</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aqueous chemistry ; Computational fluid dynamics ; Fluid flow ; Fluids ; Interferometry ; Mica ; Polyetherimides ; Refractive index ; Refractivity ; Simulation ; Substrates ; Surface roughness ; Thin films</subject><ispartof>Analytical chemistry (Washington), 2014-12, Vol.86 (23), p.11860-11867</ispartof><rights>Copyright American Chemical Society Dec 2, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-674a2da1dd8da3347f5b0dddc2645aeb612c5cce773cceaae4ebe38e4c7392063</citedby><cites>FETCH-LOGICAL-a479t-674a2da1dd8da3347f5b0dddc2645aeb612c5cce773cceaae4ebe38e4c7392063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac503469x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac503469x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25365770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kienle, Daniel F.</creatorcontrib><creatorcontrib>Kuhl, Tonya L.</creatorcontrib><title>Analyzing Refractive Index Profiles of Confined Fluids by Interferometry</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force apparatus (SFA). The technique does not require contacting or confining the fluid or film. By analyzing interferometry data taken at many intersurface separation distances out to at least 300 nm, the properties of a film can be quantitatively determined. The film can consist of material deposited on the surface, like a polymer brush, or variation in a fluid’s refractive index near a surface resulting from, for example, a concentration gradient, depletion in density, or surface roughness. The method is demonstrated with aqueous polyethylenimine (PEI) adsorbed onto mica substrates, which has a large concentration and therefore refractive index gradient near the mica surface. The PEI layer thickness determined by the proposed method is consistent with the thickness measured by conventional SFA methods. Additionally, a thorough investigation of the effects of random and systematic error in SFA data analysis and modeling via simulations of interferometry is described in detail.</description><subject>Aqueous chemistry</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Interferometry</subject><subject>Mica</subject><subject>Polyetherimides</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Simulation</subject><subject>Substrates</subject><subject>Surface roughness</subject><subject>Thin films</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0U1Lw0AQBuBFFFurB_-ABETQQ3T2I7vNsRRrCwVF9Bw2uxNJSZO6m0jjrzeltYhevMxcHt6Bdwg5p3BLgdE7bSLgQsbrA9KnEYNQDofskPQBgIdMAfTIifcLAEqBymPSYxGXkVLQJ9NRqYv2My_fgmfMnDZ1_oHBrLS4Dp5cleUF-qDKgnFVZnmJNpgUTW59kLYdqtFl6Kol1q49JUeZLjye7faAvE7uX8bTcP74MBuP5qEWKq5DqYRmVlNrh1ZzLlQWpWCtNUyKSGMqKTORMagU76bWKDBFPkRhFI8ZSD4g19vclaveG_R1ssy9waLQJVaNT6iMGRcMYvoPyuI44kxARy9_0UXVuK6ajeKMS9kV16mbrTKu8t5hlqxcvtSuTSgkm08k-0909mKX2KRLtHv5XX0HrrZAG__j2p-gL_8-jpY</recordid><startdate>20141202</startdate><enddate>20141202</enddate><creator>Kienle, Daniel F.</creator><creator>Kuhl, Tonya L.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20141202</creationdate><title>Analyzing Refractive Index Profiles of Confined Fluids by Interferometry</title><author>Kienle, Daniel F. ; Kuhl, Tonya L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-674a2da1dd8da3347f5b0dddc2645aeb612c5cce773cceaae4ebe38e4c7392063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aqueous chemistry</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Interferometry</topic><topic>Mica</topic><topic>Polyetherimides</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Simulation</topic><topic>Substrates</topic><topic>Surface roughness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kienle, Daniel F.</creatorcontrib><creatorcontrib>Kuhl, Tonya L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kienle, Daniel F.</au><au>Kuhl, Tonya L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing Refractive Index Profiles of Confined Fluids by Interferometry</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2014-12-02</date><risdate>2014</risdate><volume>86</volume><issue>23</issue><spage>11860</spage><epage>11867</epage><pages>11860-11867</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force apparatus (SFA). The technique does not require contacting or confining the fluid or film. By analyzing interferometry data taken at many intersurface separation distances out to at least 300 nm, the properties of a film can be quantitatively determined. The film can consist of material deposited on the surface, like a polymer brush, or variation in a fluid’s refractive index near a surface resulting from, for example, a concentration gradient, depletion in density, or surface roughness. The method is demonstrated with aqueous polyethylenimine (PEI) adsorbed onto mica substrates, which has a large concentration and therefore refractive index gradient near the mica surface. The PEI layer thickness determined by the proposed method is consistent with the thickness measured by conventional SFA methods. Additionally, a thorough investigation of the effects of random and systematic error in SFA data analysis and modeling via simulations of interferometry is described in detail.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25365770</pmid><doi>10.1021/ac503469x</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2014-12, Vol.86 (23), p.11860-11867 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692342091 |
source | American Chemical Society Journals |
subjects | Aqueous chemistry Computational fluid dynamics Fluid flow Fluids Interferometry Mica Polyetherimides Refractive index Refractivity Simulation Substrates Surface roughness Thin films |
title | Analyzing Refractive Index Profiles of Confined Fluids by Interferometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20Refractive%20Index%20Profiles%20of%20Confined%20Fluids%20by%20Interferometry&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Kienle,%20Daniel%20F.&rft.date=2014-12-02&rft.volume=86&rft.issue=23&rft.spage=11860&rft.epage=11867&rft.pages=11860-11867&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac503469x&rft_dat=%3Cproquest_cross%3E3517627401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1632366016&rft_id=info:pmid/25365770&rfr_iscdi=true |