Analyzing Refractive Index Profiles of Confined Fluids by Interferometry

This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2014-12, Vol.86 (23), p.11860-11867
Hauptverfasser: Kienle, Daniel F., Kuhl, Tonya L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11867
container_issue 23
container_start_page 11860
container_title Analytical chemistry (Washington)
container_volume 86
creator Kienle, Daniel F.
Kuhl, Tonya L.
description This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force apparatus (SFA). The technique does not require contacting or confining the fluid or film. By analyzing interferometry data taken at many intersurface separation distances out to at least 300 nm, the properties of a film can be quantitatively determined. The film can consist of material deposited on the surface, like a polymer brush, or variation in a fluid’s refractive index near a surface resulting from, for example, a concentration gradient, depletion in density, or surface roughness. The method is demonstrated with aqueous polyethylenimine (PEI) adsorbed onto mica substrates, which has a large concentration and therefore refractive index gradient near the mica surface. The PEI layer thickness determined by the proposed method is consistent with the thickness measured by conventional SFA methods. Additionally, a thorough investigation of the effects of random and systematic error in SFA data analysis and modeling via simulations of interferometry is described in detail.
doi_str_mv 10.1021/ac503469x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692342091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3517627401</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-674a2da1dd8da3347f5b0dddc2645aeb612c5cce773cceaae4ebe38e4c7392063</originalsourceid><addsrcrecordid>eNqN0U1Lw0AQBuBFFFurB_-ABETQQ3T2I7vNsRRrCwVF9Bw2uxNJSZO6m0jjrzeltYhevMxcHt6Bdwg5p3BLgdE7bSLgQsbrA9KnEYNQDofskPQBgIdMAfTIifcLAEqBymPSYxGXkVLQJ9NRqYv2My_fgmfMnDZ1_oHBrLS4Dp5cleUF-qDKgnFVZnmJNpgUTW59kLYdqtFl6Kol1q49JUeZLjye7faAvE7uX8bTcP74MBuP5qEWKq5DqYRmVlNrh1ZzLlQWpWCtNUyKSGMqKTORMagU76bWKDBFPkRhFI8ZSD4g19vclaveG_R1ssy9waLQJVaNT6iMGRcMYvoPyuI44kxARy9_0UXVuK6ajeKMS9kV16mbrTKu8t5hlqxcvtSuTSgkm08k-0909mKX2KRLtHv5XX0HrrZAG__j2p-gL_8-jpY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1632366016</pqid></control><display><type>article</type><title>Analyzing Refractive Index Profiles of Confined Fluids by Interferometry</title><source>American Chemical Society Journals</source><creator>Kienle, Daniel F. ; Kuhl, Tonya L.</creator><creatorcontrib>Kienle, Daniel F. ; Kuhl, Tonya L.</creatorcontrib><description>This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force apparatus (SFA). The technique does not require contacting or confining the fluid or film. By analyzing interferometry data taken at many intersurface separation distances out to at least 300 nm, the properties of a film can be quantitatively determined. The film can consist of material deposited on the surface, like a polymer brush, or variation in a fluid’s refractive index near a surface resulting from, for example, a concentration gradient, depletion in density, or surface roughness. The method is demonstrated with aqueous polyethylenimine (PEI) adsorbed onto mica substrates, which has a large concentration and therefore refractive index gradient near the mica surface. The PEI layer thickness determined by the proposed method is consistent with the thickness measured by conventional SFA methods. Additionally, a thorough investigation of the effects of random and systematic error in SFA data analysis and modeling via simulations of interferometry is described in detail.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac503469x</identifier><identifier>PMID: 25365770</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aqueous chemistry ; Computational fluid dynamics ; Fluid flow ; Fluids ; Interferometry ; Mica ; Polyetherimides ; Refractive index ; Refractivity ; Simulation ; Substrates ; Surface roughness ; Thin films</subject><ispartof>Analytical chemistry (Washington), 2014-12, Vol.86 (23), p.11860-11867</ispartof><rights>Copyright American Chemical Society Dec 2, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-674a2da1dd8da3347f5b0dddc2645aeb612c5cce773cceaae4ebe38e4c7392063</citedby><cites>FETCH-LOGICAL-a479t-674a2da1dd8da3347f5b0dddc2645aeb612c5cce773cceaae4ebe38e4c7392063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac503469x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac503469x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25365770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kienle, Daniel F.</creatorcontrib><creatorcontrib>Kuhl, Tonya L.</creatorcontrib><title>Analyzing Refractive Index Profiles of Confined Fluids by Interferometry</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force apparatus (SFA). The technique does not require contacting or confining the fluid or film. By analyzing interferometry data taken at many intersurface separation distances out to at least 300 nm, the properties of a film can be quantitatively determined. The film can consist of material deposited on the surface, like a polymer brush, or variation in a fluid’s refractive index near a surface resulting from, for example, a concentration gradient, depletion in density, or surface roughness. The method is demonstrated with aqueous polyethylenimine (PEI) adsorbed onto mica substrates, which has a large concentration and therefore refractive index gradient near the mica surface. The PEI layer thickness determined by the proposed method is consistent with the thickness measured by conventional SFA methods. Additionally, a thorough investigation of the effects of random and systematic error in SFA data analysis and modeling via simulations of interferometry is described in detail.</description><subject>Aqueous chemistry</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Interferometry</subject><subject>Mica</subject><subject>Polyetherimides</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Simulation</subject><subject>Substrates</subject><subject>Surface roughness</subject><subject>Thin films</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0U1Lw0AQBuBFFFurB_-ABETQQ3T2I7vNsRRrCwVF9Bw2uxNJSZO6m0jjrzeltYhevMxcHt6Bdwg5p3BLgdE7bSLgQsbrA9KnEYNQDofskPQBgIdMAfTIifcLAEqBymPSYxGXkVLQJ9NRqYv2My_fgmfMnDZ1_oHBrLS4Dp5cleUF-qDKgnFVZnmJNpgUTW59kLYdqtFl6Kol1q49JUeZLjye7faAvE7uX8bTcP74MBuP5qEWKq5DqYRmVlNrh1ZzLlQWpWCtNUyKSGMqKTORMagU76bWKDBFPkRhFI8ZSD4g19vclaveG_R1ssy9waLQJVaNT6iMGRcMYvoPyuI44kxARy9_0UXVuK6ajeKMS9kV16mbrTKu8t5hlqxcvtSuTSgkm08k-0909mKX2KRLtHv5XX0HrrZAG__j2p-gL_8-jpY</recordid><startdate>20141202</startdate><enddate>20141202</enddate><creator>Kienle, Daniel F.</creator><creator>Kuhl, Tonya L.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20141202</creationdate><title>Analyzing Refractive Index Profiles of Confined Fluids by Interferometry</title><author>Kienle, Daniel F. ; Kuhl, Tonya L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-674a2da1dd8da3347f5b0dddc2645aeb612c5cce773cceaae4ebe38e4c7392063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aqueous chemistry</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Interferometry</topic><topic>Mica</topic><topic>Polyetherimides</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Simulation</topic><topic>Substrates</topic><topic>Surface roughness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kienle, Daniel F.</creatorcontrib><creatorcontrib>Kuhl, Tonya L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kienle, Daniel F.</au><au>Kuhl, Tonya L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing Refractive Index Profiles of Confined Fluids by Interferometry</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2014-12-02</date><risdate>2014</risdate><volume>86</volume><issue>23</issue><spage>11860</spage><epage>11867</epage><pages>11860-11867</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force apparatus (SFA). The technique does not require contacting or confining the fluid or film. By analyzing interferometry data taken at many intersurface separation distances out to at least 300 nm, the properties of a film can be quantitatively determined. The film can consist of material deposited on the surface, like a polymer brush, or variation in a fluid’s refractive index near a surface resulting from, for example, a concentration gradient, depletion in density, or surface roughness. The method is demonstrated with aqueous polyethylenimine (PEI) adsorbed onto mica substrates, which has a large concentration and therefore refractive index gradient near the mica surface. The PEI layer thickness determined by the proposed method is consistent with the thickness measured by conventional SFA methods. Additionally, a thorough investigation of the effects of random and systematic error in SFA data analysis and modeling via simulations of interferometry is described in detail.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25365770</pmid><doi>10.1021/ac503469x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2014-12, Vol.86 (23), p.11860-11867
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1692342091
source American Chemical Society Journals
subjects Aqueous chemistry
Computational fluid dynamics
Fluid flow
Fluids
Interferometry
Mica
Polyetherimides
Refractive index
Refractivity
Simulation
Substrates
Surface roughness
Thin films
title Analyzing Refractive Index Profiles of Confined Fluids by Interferometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20Refractive%20Index%20Profiles%20of%20Confined%20Fluids%20by%20Interferometry&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Kienle,%20Daniel%20F.&rft.date=2014-12-02&rft.volume=86&rft.issue=23&rft.spage=11860&rft.epage=11867&rft.pages=11860-11867&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac503469x&rft_dat=%3Cproquest_cross%3E3517627401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1632366016&rft_id=info:pmid/25365770&rfr_iscdi=true