Fine Control Over the Size of Surfactant–Polyelectrolyte Nanoparticles by Hydrodynamic Flow Focusing

Synthesis of surfactant–polyelectrolyte nanoparticles was carried out in a microfluidic device with a fine control over the size and the polydispersity. An anionic polysaccharide (sodium carboxymethylcellulose, CMC) solution was focused using a cationic surfactant (dodecyl trimethylammonium bromide,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2013-06, Vol.85 (12), p.5850-5856
Hauptverfasser: Tresset, Guillaume, Marculescu, Catalin, Salonen, Anniina, Ni, Ming, Iliescu, Ciprian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5856
container_issue 12
container_start_page 5850
container_title Analytical chemistry (Washington)
container_volume 85
creator Tresset, Guillaume
Marculescu, Catalin
Salonen, Anniina
Ni, Ming
Iliescu, Ciprian
description Synthesis of surfactant–polyelectrolyte nanoparticles was carried out in a microfluidic device with a fine control over the size and the polydispersity. An anionic polysaccharide (sodium carboxymethylcellulose, CMC) solution was focused using a cationic surfactant (dodecyl trimethylammonium bromide, DTAB) solution in a microfluidic channel at selected ratios of flow rates and reagent concentrations. The methodology ensured a controlled mixing kinetics and a uniform distribution of charges at the mixing interface. The resulting nanoparticles exhibited remarkably well-defined and repeatable size distributions, with hydrodynamic diameters tunable from 50 up to 300 nm and polydispersity index around 0.1 in most cases. Microfluidic-assisted self-assembly may be an efficient way to produce well-controlled polyelectrolyte-based nanoparticles suitable for colloidal science as well as for gene delivery applications.
doi_str_mv 10.1021/ac4006155
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692341696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692341696</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-bcaa76d812bf9f60a11acf58f3a3e900c9771b0bea2131d53da39f7d3889153d3</originalsourceid><addsrcrecordid>eNqF0dFK3EAUBuBBKrraXvgCMlAK9SL2nJnNTHIpS9cVRAu21-FkMqORbGY7k1jSq76Db-iTmGVVRC96M4eBj_9w-Bk7QDhGEPiNzBRAYZpusQmmAhKVZeIDmwCATIQG2GV7Md4CIAKqHbYrpEaZpWLC3LxuLZ_5tgu-4Zd3NvDuxvKr-q_l3vGrPjgyHbXdw7_7H74ZbGPNmg6d5RfU-hWFrjaNjbwc-GKogq-Glpa14fPG_-Fzb_pYt9cf2bajJtpPT3Of_Zp__zlbJOeXp2ezk_OEpFZdUhoiraoMRelyp4AQybg0c5KkzQFMrjWWUFoSKLFKZUUyd7qSWZbj-JP77OsmdxX8797GrljW0dimodb6PhaociGn46v-T6XKNWoxXdPPb-it70M7HjIqjanSegqjOtooE3yMwbpiFeolhaFAKNY9FS89jfbwKbEvl7Z6kc_FjODLBpCJr7a9C3oEqdyZNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1371567740</pqid></control><display><type>article</type><title>Fine Control Over the Size of Surfactant–Polyelectrolyte Nanoparticles by Hydrodynamic Flow Focusing</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Tresset, Guillaume ; Marculescu, Catalin ; Salonen, Anniina ; Ni, Ming ; Iliescu, Ciprian</creator><creatorcontrib>Tresset, Guillaume ; Marculescu, Catalin ; Salonen, Anniina ; Ni, Ming ; Iliescu, Ciprian</creatorcontrib><description>Synthesis of surfactant–polyelectrolyte nanoparticles was carried out in a microfluidic device with a fine control over the size and the polydispersity. An anionic polysaccharide (sodium carboxymethylcellulose, CMC) solution was focused using a cationic surfactant (dodecyl trimethylammonium bromide, DTAB) solution in a microfluidic channel at selected ratios of flow rates and reagent concentrations. The methodology ensured a controlled mixing kinetics and a uniform distribution of charges at the mixing interface. The resulting nanoparticles exhibited remarkably well-defined and repeatable size distributions, with hydrodynamic diameters tunable from 50 up to 300 nm and polydispersity index around 0.1 in most cases. Microfluidic-assisted self-assembly may be an efficient way to produce well-controlled polyelectrolyte-based nanoparticles suitable for colloidal science as well as for gene delivery applications.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac4006155</identifier><identifier>PMID: 23713852</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Carboxymethylcellulose Sodium - chemistry ; Cellulose ; Electrolytes ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Hydrodynamics ; Microfluidics ; Microfluidics - methods ; Nanoparticles ; Nanoparticles - chemistry ; Particle Size ; Polydispersity ; Self assembly ; Sodium ; Surface-Active Agents - chemistry ; Surfactants</subject><ispartof>Analytical chemistry (Washington), 2013-06, Vol.85 (12), p.5850-5856</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>Copyright American Chemical Society Jun 18, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-bcaa76d812bf9f60a11acf58f3a3e900c9771b0bea2131d53da39f7d3889153d3</citedby><cites>FETCH-LOGICAL-a376t-bcaa76d812bf9f60a11acf58f3a3e900c9771b0bea2131d53da39f7d3889153d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac4006155$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac4006155$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23713852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tresset, Guillaume</creatorcontrib><creatorcontrib>Marculescu, Catalin</creatorcontrib><creatorcontrib>Salonen, Anniina</creatorcontrib><creatorcontrib>Ni, Ming</creatorcontrib><creatorcontrib>Iliescu, Ciprian</creatorcontrib><title>Fine Control Over the Size of Surfactant–Polyelectrolyte Nanoparticles by Hydrodynamic Flow Focusing</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Synthesis of surfactant–polyelectrolyte nanoparticles was carried out in a microfluidic device with a fine control over the size and the polydispersity. An anionic polysaccharide (sodium carboxymethylcellulose, CMC) solution was focused using a cationic surfactant (dodecyl trimethylammonium bromide, DTAB) solution in a microfluidic channel at selected ratios of flow rates and reagent concentrations. The methodology ensured a controlled mixing kinetics and a uniform distribution of charges at the mixing interface. The resulting nanoparticles exhibited remarkably well-defined and repeatable size distributions, with hydrodynamic diameters tunable from 50 up to 300 nm and polydispersity index around 0.1 in most cases. Microfluidic-assisted self-assembly may be an efficient way to produce well-controlled polyelectrolyte-based nanoparticles suitable for colloidal science as well as for gene delivery applications.</description><subject>Carboxymethylcellulose Sodium - chemistry</subject><subject>Cellulose</subject><subject>Electrolytes</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>Microfluidics</subject><subject>Microfluidics - methods</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Polydispersity</subject><subject>Self assembly</subject><subject>Sodium</subject><subject>Surface-Active Agents - chemistry</subject><subject>Surfactants</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0dFK3EAUBuBBKrraXvgCMlAK9SL2nJnNTHIpS9cVRAu21-FkMqORbGY7k1jSq76Db-iTmGVVRC96M4eBj_9w-Bk7QDhGEPiNzBRAYZpusQmmAhKVZeIDmwCATIQG2GV7Md4CIAKqHbYrpEaZpWLC3LxuLZ_5tgu-4Zd3NvDuxvKr-q_l3vGrPjgyHbXdw7_7H74ZbGPNmg6d5RfU-hWFrjaNjbwc-GKogq-Glpa14fPG_-Fzb_pYt9cf2bajJtpPT3Of_Zp__zlbJOeXp2ezk_OEpFZdUhoiraoMRelyp4AQybg0c5KkzQFMrjWWUFoSKLFKZUUyd7qSWZbj-JP77OsmdxX8797GrljW0dimodb6PhaociGn46v-T6XKNWoxXdPPb-it70M7HjIqjanSegqjOtooE3yMwbpiFeolhaFAKNY9FS89jfbwKbEvl7Z6kc_FjODLBpCJr7a9C3oEqdyZNQ</recordid><startdate>20130618</startdate><enddate>20130618</enddate><creator>Tresset, Guillaume</creator><creator>Marculescu, Catalin</creator><creator>Salonen, Anniina</creator><creator>Ni, Ming</creator><creator>Iliescu, Ciprian</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20130618</creationdate><title>Fine Control Over the Size of Surfactant–Polyelectrolyte Nanoparticles by Hydrodynamic Flow Focusing</title><author>Tresset, Guillaume ; Marculescu, Catalin ; Salonen, Anniina ; Ni, Ming ; Iliescu, Ciprian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-bcaa76d812bf9f60a11acf58f3a3e900c9771b0bea2131d53da39f7d3889153d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Carboxymethylcellulose Sodium - chemistry</topic><topic>Cellulose</topic><topic>Electrolytes</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>Microfluidics</topic><topic>Microfluidics - methods</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Polydispersity</topic><topic>Self assembly</topic><topic>Sodium</topic><topic>Surface-Active Agents - chemistry</topic><topic>Surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tresset, Guillaume</creatorcontrib><creatorcontrib>Marculescu, Catalin</creatorcontrib><creatorcontrib>Salonen, Anniina</creatorcontrib><creatorcontrib>Ni, Ming</creatorcontrib><creatorcontrib>Iliescu, Ciprian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tresset, Guillaume</au><au>Marculescu, Catalin</au><au>Salonen, Anniina</au><au>Ni, Ming</au><au>Iliescu, Ciprian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine Control Over the Size of Surfactant–Polyelectrolyte Nanoparticles by Hydrodynamic Flow Focusing</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2013-06-18</date><risdate>2013</risdate><volume>85</volume><issue>12</issue><spage>5850</spage><epage>5856</epage><pages>5850-5856</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Synthesis of surfactant–polyelectrolyte nanoparticles was carried out in a microfluidic device with a fine control over the size and the polydispersity. An anionic polysaccharide (sodium carboxymethylcellulose, CMC) solution was focused using a cationic surfactant (dodecyl trimethylammonium bromide, DTAB) solution in a microfluidic channel at selected ratios of flow rates and reagent concentrations. The methodology ensured a controlled mixing kinetics and a uniform distribution of charges at the mixing interface. The resulting nanoparticles exhibited remarkably well-defined and repeatable size distributions, with hydrodynamic diameters tunable from 50 up to 300 nm and polydispersity index around 0.1 in most cases. Microfluidic-assisted self-assembly may be an efficient way to produce well-controlled polyelectrolyte-based nanoparticles suitable for colloidal science as well as for gene delivery applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23713852</pmid><doi>10.1021/ac4006155</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2013-06, Vol.85 (12), p.5850-5856
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1692341696
source MEDLINE; American Chemical Society Journals
subjects Carboxymethylcellulose Sodium - chemistry
Cellulose
Electrolytes
Fluid dynamics
Fluid flow
Fluid mechanics
Hydrodynamics
Microfluidics
Microfluidics - methods
Nanoparticles
Nanoparticles - chemistry
Particle Size
Polydispersity
Self assembly
Sodium
Surface-Active Agents - chemistry
Surfactants
title Fine Control Over the Size of Surfactant–Polyelectrolyte Nanoparticles by Hydrodynamic Flow Focusing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine%20Control%20Over%20the%20Size%20of%20Surfactant%E2%80%93Polyelectrolyte%20Nanoparticles%20by%20Hydrodynamic%20Flow%20Focusing&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Tresset,%20Guillaume&rft.date=2013-06-18&rft.volume=85&rft.issue=12&rft.spage=5850&rft.epage=5856&rft.pages=5850-5856&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac4006155&rft_dat=%3Cproquest_cross%3E1692341696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1371567740&rft_id=info:pmid/23713852&rfr_iscdi=true