A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency

Nonmixed planar heterojunction (PHJ) small-molecule organic photovoltaics (OPVs) with 96% internal quantum efficiency (at 595nm) and 4.77% power conversion efficiency (PCE) have been demonstrated. In addition to boron subphthalocyanine chloride (SubPc) and C60 as electron donor and acceptor material...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2015-06, Vol.137, p.138-145
Hauptverfasser: Lin, Chi-Feng, Liu, Shun-Wei, Lee, Chih-Chien, Sakurai, Takeaki, Kubota, Masato, Su, Wei-Cheng, Huang, Jia-Cing, Chiu, Tien-Lung, Han, Hsieh-Cheng, Chen, Li-Chyong, Chen, Chin-Ti, Lee, Jiun-Haw
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 145
container_issue
container_start_page 138
container_title Solar energy materials and solar cells
container_volume 137
creator Lin, Chi-Feng
Liu, Shun-Wei
Lee, Chih-Chien
Sakurai, Takeaki
Kubota, Masato
Su, Wei-Cheng
Huang, Jia-Cing
Chiu, Tien-Lung
Han, Hsieh-Cheng
Chen, Li-Chyong
Chen, Chin-Ti
Lee, Jiun-Haw
description Nonmixed planar heterojunction (PHJ) small-molecule organic photovoltaics (OPVs) with 96% internal quantum efficiency (at 595nm) and 4.77% power conversion efficiency (PCE) have been demonstrated. In addition to boron subphthalocyanine chloride (SubPc) and C60 as electron donor and acceptor materials, respectively, PHJ OPVs contain an ultrathin (2nm) buffer layer of bis-(naphthylphenylaminophenyl)fumaronitrile (NPAFN) between the indium tin oxide (ITO) anode and the donor layer (SubPc). Compared with copper phthalocyanine (CuPc) or α-naphthylphenylbiphenyl diamine (NPB) buffer layers, the NPAFN buffer layer blocks the exciton diffusion from the SubPc electron donor layer to the ITO anode more effectively and considerably improves the short circuit current (JSC) from 5.96 (without an NPAFN layer) to 7.70mA/cm2 (with a 4-mm-thick NPAFN layer ). In addition, experimental results indicated that the NPAFN buffer layer reduces the crystallization, or stacking, of the SubPc electron donor, thereby limiting the reverse saturation current and elevating the open circuit voltage (VOC) from 1.01 (without an NPAFN layer) to 1.08V (with a-2-nm thick NPAFN layer). However, series resistance (RS) of the OPV monotonically increases with increasing NPAFN layer thickness. The performance of the OPV is optimized when the NPAFN buffer layer thickness is 2nm. Compared with a SubPc–C60 PHJ OPV without an NPAFN buffer layer, the PCE of a OPV with a buffer layer increases by 22% from 3.96% to 4.77%, with a concurrent increase in JSC (from 5.96 to 7.02mA/cm2) and VOC (from 1.01 to 1.08V). However, a decrease in RS (from 10.21 to 14.95Ωcm2) and in fill factor (from 65% to 63%) is also observed. •Planar heterojunction small-molecular OPV device with the device efficiency of 4.77%.•A new type anodic buffer layer as exciton buffer layer of the OPV devices.•Internal quantum efficiency of the device reached 96% at 590nm.
doi_str_mv 10.1016/j.solmat.2015.01.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692341287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092702481500015X</els_id><sourcerecordid>1692341287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-ef000589cf7d2b2179c2c4e3dfca54765717aec63696fcc88830e05f0d05365c3</originalsourceid><addsrcrecordid>eNqNUU2LFDEQDaLguPoPPOQieOnZfPRHchGWxS9Y8KLnkKmubGfoTnqT9Oj8Hv-oWcezLFSqEurVK14eIW8523PG--vjPsd5sWUvGO_2jNfgz8iOq0E3Umr1nOyYFkPDRKteklc5Hxljopftjvy-oQF_Uhvi6IEeNucw0dmea66EmLydqYuJhhiaxf_Cka6zDTbRCWs3HrcAxcdAYZpjiod6As3bYZ3KZOcIZxt8QBrTfb0AXadY4inOxdaHhcnjyYd7qvt31IfKF-q2h82Gsi0UnfPgMcD5NXnh7Jzxzb96RX58-vj99ktz9-3z19ubuwZaqUqDrqrqlAY3jOIg-KBBQItydGC7dui7gQ8WoZe97h2AUkoyZJ1jI-tk34G8Iu8vvGuKDxvmYhafAecqGOOWDe-1kC0XangKlAstlOoqtL1AIcWcEzqzJr_YdDacmUf7zNFc7DOP9hnGa_A69uEyhlXxyWMy-e9v4OgTQjFj9P8n-AODlqm7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691292885</pqid></control><display><type>article</type><title>A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lin, Chi-Feng ; Liu, Shun-Wei ; Lee, Chih-Chien ; Sakurai, Takeaki ; Kubota, Masato ; Su, Wei-Cheng ; Huang, Jia-Cing ; Chiu, Tien-Lung ; Han, Hsieh-Cheng ; Chen, Li-Chyong ; Chen, Chin-Ti ; Lee, Jiun-Haw</creator><creatorcontrib>Lin, Chi-Feng ; Liu, Shun-Wei ; Lee, Chih-Chien ; Sakurai, Takeaki ; Kubota, Masato ; Su, Wei-Cheng ; Huang, Jia-Cing ; Chiu, Tien-Lung ; Han, Hsieh-Cheng ; Chen, Li-Chyong ; Chen, Chin-Ti ; Lee, Jiun-Haw</creatorcontrib><description>Nonmixed planar heterojunction (PHJ) small-molecule organic photovoltaics (OPVs) with 96% internal quantum efficiency (at 595nm) and 4.77% power conversion efficiency (PCE) have been demonstrated. In addition to boron subphthalocyanine chloride (SubPc) and C60 as electron donor and acceptor materials, respectively, PHJ OPVs contain an ultrathin (2nm) buffer layer of bis-(naphthylphenylaminophenyl)fumaronitrile (NPAFN) between the indium tin oxide (ITO) anode and the donor layer (SubPc). Compared with copper phthalocyanine (CuPc) or α-naphthylphenylbiphenyl diamine (NPB) buffer layers, the NPAFN buffer layer blocks the exciton diffusion from the SubPc electron donor layer to the ITO anode more effectively and considerably improves the short circuit current (JSC) from 5.96 (without an NPAFN layer) to 7.70mA/cm2 (with a 4-mm-thick NPAFN layer ). In addition, experimental results indicated that the NPAFN buffer layer reduces the crystallization, or stacking, of the SubPc electron donor, thereby limiting the reverse saturation current and elevating the open circuit voltage (VOC) from 1.01 (without an NPAFN layer) to 1.08V (with a-2-nm thick NPAFN layer). However, series resistance (RS) of the OPV monotonically increases with increasing NPAFN layer thickness. The performance of the OPV is optimized when the NPAFN buffer layer thickness is 2nm. Compared with a SubPc–C60 PHJ OPV without an NPAFN buffer layer, the PCE of a OPV with a buffer layer increases by 22% from 3.96% to 4.77%, with a concurrent increase in JSC (from 5.96 to 7.02mA/cm2) and VOC (from 1.01 to 1.08V). However, a decrease in RS (from 10.21 to 14.95Ωcm2) and in fill factor (from 65% to 63%) is also observed. •Planar heterojunction small-molecular OPV device with the device efficiency of 4.77%.•A new type anodic buffer layer as exciton buffer layer of the OPV devices.•Internal quantum efficiency of the device reached 96% at 590nm.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2015.01.011</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>ANODES ; Anodic buffer layer ; Buffer layers ; CHLORIDES ; COPPER PHTHALOCYANINE ; Heterojunctions ; Indium tin oxide ; INTERFACES ; Internal quantum efficiency ; ORGANIC COMPOUNDS ; Organic photovoltaic ; Photovoltaic cells ; Planer heterojunction ; Quantum efficiency ; Solar cells ; Volatile organic compounds</subject><ispartof>Solar energy materials and solar cells, 2015-06, Vol.137, p.138-145</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-ef000589cf7d2b2179c2c4e3dfca54765717aec63696fcc88830e05f0d05365c3</citedby><cites>FETCH-LOGICAL-c438t-ef000589cf7d2b2179c2c4e3dfca54765717aec63696fcc88830e05f0d05365c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2015.01.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Lin, Chi-Feng</creatorcontrib><creatorcontrib>Liu, Shun-Wei</creatorcontrib><creatorcontrib>Lee, Chih-Chien</creatorcontrib><creatorcontrib>Sakurai, Takeaki</creatorcontrib><creatorcontrib>Kubota, Masato</creatorcontrib><creatorcontrib>Su, Wei-Cheng</creatorcontrib><creatorcontrib>Huang, Jia-Cing</creatorcontrib><creatorcontrib>Chiu, Tien-Lung</creatorcontrib><creatorcontrib>Han, Hsieh-Cheng</creatorcontrib><creatorcontrib>Chen, Li-Chyong</creatorcontrib><creatorcontrib>Chen, Chin-Ti</creatorcontrib><creatorcontrib>Lee, Jiun-Haw</creatorcontrib><title>A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency</title><title>Solar energy materials and solar cells</title><description>Nonmixed planar heterojunction (PHJ) small-molecule organic photovoltaics (OPVs) with 96% internal quantum efficiency (at 595nm) and 4.77% power conversion efficiency (PCE) have been demonstrated. In addition to boron subphthalocyanine chloride (SubPc) and C60 as electron donor and acceptor materials, respectively, PHJ OPVs contain an ultrathin (2nm) buffer layer of bis-(naphthylphenylaminophenyl)fumaronitrile (NPAFN) between the indium tin oxide (ITO) anode and the donor layer (SubPc). Compared with copper phthalocyanine (CuPc) or α-naphthylphenylbiphenyl diamine (NPB) buffer layers, the NPAFN buffer layer blocks the exciton diffusion from the SubPc electron donor layer to the ITO anode more effectively and considerably improves the short circuit current (JSC) from 5.96 (without an NPAFN layer) to 7.70mA/cm2 (with a 4-mm-thick NPAFN layer ). In addition, experimental results indicated that the NPAFN buffer layer reduces the crystallization, or stacking, of the SubPc electron donor, thereby limiting the reverse saturation current and elevating the open circuit voltage (VOC) from 1.01 (without an NPAFN layer) to 1.08V (with a-2-nm thick NPAFN layer). However, series resistance (RS) of the OPV monotonically increases with increasing NPAFN layer thickness. The performance of the OPV is optimized when the NPAFN buffer layer thickness is 2nm. Compared with a SubPc–C60 PHJ OPV without an NPAFN buffer layer, the PCE of a OPV with a buffer layer increases by 22% from 3.96% to 4.77%, with a concurrent increase in JSC (from 5.96 to 7.02mA/cm2) and VOC (from 1.01 to 1.08V). However, a decrease in RS (from 10.21 to 14.95Ωcm2) and in fill factor (from 65% to 63%) is also observed. •Planar heterojunction small-molecular OPV device with the device efficiency of 4.77%.•A new type anodic buffer layer as exciton buffer layer of the OPV devices.•Internal quantum efficiency of the device reached 96% at 590nm.</description><subject>ANODES</subject><subject>Anodic buffer layer</subject><subject>Buffer layers</subject><subject>CHLORIDES</subject><subject>COPPER PHTHALOCYANINE</subject><subject>Heterojunctions</subject><subject>Indium tin oxide</subject><subject>INTERFACES</subject><subject>Internal quantum efficiency</subject><subject>ORGANIC COMPOUNDS</subject><subject>Organic photovoltaic</subject><subject>Photovoltaic cells</subject><subject>Planer heterojunction</subject><subject>Quantum efficiency</subject><subject>Solar cells</subject><subject>Volatile organic compounds</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNUU2LFDEQDaLguPoPPOQieOnZfPRHchGWxS9Y8KLnkKmubGfoTnqT9Oj8Hv-oWcezLFSqEurVK14eIW8523PG--vjPsd5sWUvGO_2jNfgz8iOq0E3Umr1nOyYFkPDRKteklc5Hxljopftjvy-oQF_Uhvi6IEeNucw0dmea66EmLydqYuJhhiaxf_Cka6zDTbRCWs3HrcAxcdAYZpjiod6As3bYZ3KZOcIZxt8QBrTfb0AXadY4inOxdaHhcnjyYd7qvt31IfKF-q2h82Gsi0UnfPgMcD5NXnh7Jzxzb96RX58-vj99ktz9-3z19ubuwZaqUqDrqrqlAY3jOIg-KBBQItydGC7dui7gQ8WoZe97h2AUkoyZJ1jI-tk34G8Iu8vvGuKDxvmYhafAecqGOOWDe-1kC0XangKlAstlOoqtL1AIcWcEzqzJr_YdDacmUf7zNFc7DOP9hnGa_A69uEyhlXxyWMy-e9v4OgTQjFj9P8n-AODlqm7</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Lin, Chi-Feng</creator><creator>Liu, Shun-Wei</creator><creator>Lee, Chih-Chien</creator><creator>Sakurai, Takeaki</creator><creator>Kubota, Masato</creator><creator>Su, Wei-Cheng</creator><creator>Huang, Jia-Cing</creator><creator>Chiu, Tien-Lung</creator><creator>Han, Hsieh-Cheng</creator><creator>Chen, Li-Chyong</creator><creator>Chen, Chin-Ti</creator><creator>Lee, Jiun-Haw</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150601</creationdate><title>A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency</title><author>Lin, Chi-Feng ; Liu, Shun-Wei ; Lee, Chih-Chien ; Sakurai, Takeaki ; Kubota, Masato ; Su, Wei-Cheng ; Huang, Jia-Cing ; Chiu, Tien-Lung ; Han, Hsieh-Cheng ; Chen, Li-Chyong ; Chen, Chin-Ti ; Lee, Jiun-Haw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-ef000589cf7d2b2179c2c4e3dfca54765717aec63696fcc88830e05f0d05365c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ANODES</topic><topic>Anodic buffer layer</topic><topic>Buffer layers</topic><topic>CHLORIDES</topic><topic>COPPER PHTHALOCYANINE</topic><topic>Heterojunctions</topic><topic>Indium tin oxide</topic><topic>INTERFACES</topic><topic>Internal quantum efficiency</topic><topic>ORGANIC COMPOUNDS</topic><topic>Organic photovoltaic</topic><topic>Photovoltaic cells</topic><topic>Planer heterojunction</topic><topic>Quantum efficiency</topic><topic>Solar cells</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Chi-Feng</creatorcontrib><creatorcontrib>Liu, Shun-Wei</creatorcontrib><creatorcontrib>Lee, Chih-Chien</creatorcontrib><creatorcontrib>Sakurai, Takeaki</creatorcontrib><creatorcontrib>Kubota, Masato</creatorcontrib><creatorcontrib>Su, Wei-Cheng</creatorcontrib><creatorcontrib>Huang, Jia-Cing</creatorcontrib><creatorcontrib>Chiu, Tien-Lung</creatorcontrib><creatorcontrib>Han, Hsieh-Cheng</creatorcontrib><creatorcontrib>Chen, Li-Chyong</creatorcontrib><creatorcontrib>Chen, Chin-Ti</creatorcontrib><creatorcontrib>Lee, Jiun-Haw</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Chi-Feng</au><au>Liu, Shun-Wei</au><au>Lee, Chih-Chien</au><au>Sakurai, Takeaki</au><au>Kubota, Masato</au><au>Su, Wei-Cheng</au><au>Huang, Jia-Cing</au><au>Chiu, Tien-Lung</au><au>Han, Hsieh-Cheng</au><au>Chen, Li-Chyong</au><au>Chen, Chin-Ti</au><au>Lee, Jiun-Haw</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>137</volume><spage>138</spage><epage>145</epage><pages>138-145</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Nonmixed planar heterojunction (PHJ) small-molecule organic photovoltaics (OPVs) with 96% internal quantum efficiency (at 595nm) and 4.77% power conversion efficiency (PCE) have been demonstrated. In addition to boron subphthalocyanine chloride (SubPc) and C60 as electron donor and acceptor materials, respectively, PHJ OPVs contain an ultrathin (2nm) buffer layer of bis-(naphthylphenylaminophenyl)fumaronitrile (NPAFN) between the indium tin oxide (ITO) anode and the donor layer (SubPc). Compared with copper phthalocyanine (CuPc) or α-naphthylphenylbiphenyl diamine (NPB) buffer layers, the NPAFN buffer layer blocks the exciton diffusion from the SubPc electron donor layer to the ITO anode more effectively and considerably improves the short circuit current (JSC) from 5.96 (without an NPAFN layer) to 7.70mA/cm2 (with a 4-mm-thick NPAFN layer ). In addition, experimental results indicated that the NPAFN buffer layer reduces the crystallization, or stacking, of the SubPc electron donor, thereby limiting the reverse saturation current and elevating the open circuit voltage (VOC) from 1.01 (without an NPAFN layer) to 1.08V (with a-2-nm thick NPAFN layer). However, series resistance (RS) of the OPV monotonically increases with increasing NPAFN layer thickness. The performance of the OPV is optimized when the NPAFN buffer layer thickness is 2nm. Compared with a SubPc–C60 PHJ OPV without an NPAFN buffer layer, the PCE of a OPV with a buffer layer increases by 22% from 3.96% to 4.77%, with a concurrent increase in JSC (from 5.96 to 7.02mA/cm2) and VOC (from 1.01 to 1.08V). However, a decrease in RS (from 10.21 to 14.95Ωcm2) and in fill factor (from 65% to 63%) is also observed. •Planar heterojunction small-molecular OPV device with the device efficiency of 4.77%.•A new type anodic buffer layer as exciton buffer layer of the OPV devices.•Internal quantum efficiency of the device reached 96% at 590nm.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2015.01.011</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2015-06, Vol.137, p.138-145
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_miscellaneous_1692341287
source ScienceDirect Journals (5 years ago - present)
subjects ANODES
Anodic buffer layer
Buffer layers
CHLORIDES
COPPER PHTHALOCYANINE
Heterojunctions
Indium tin oxide
INTERFACES
Internal quantum efficiency
ORGANIC COMPOUNDS
Organic photovoltaic
Photovoltaic cells
Planer heterojunction
Quantum efficiency
Solar cells
Volatile organic compounds
title A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20anodic%20buffer%20layer%20material%20for%20non-mixed%20planar%20heterojunction%20chloroboron%20subphthalocyanine%20organic%20photovoltaic%20achieving%2096%25%20internal%20quantum%20efficiency&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Lin,%20Chi-Feng&rft.date=2015-06-01&rft.volume=137&rft.spage=138&rft.epage=145&rft.pages=138-145&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2015.01.011&rft_dat=%3Cproquest_cross%3E1692341287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691292885&rft_id=info:pmid/&rft_els_id=S092702481500015X&rfr_iscdi=true