A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency
Nonmixed planar heterojunction (PHJ) small-molecule organic photovoltaics (OPVs) with 96% internal quantum efficiency (at 595nm) and 4.77% power conversion efficiency (PCE) have been demonstrated. In addition to boron subphthalocyanine chloride (SubPc) and C60 as electron donor and acceptor material...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2015-06, Vol.137, p.138-145 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 145 |
---|---|
container_issue | |
container_start_page | 138 |
container_title | Solar energy materials and solar cells |
container_volume | 137 |
creator | Lin, Chi-Feng Liu, Shun-Wei Lee, Chih-Chien Sakurai, Takeaki Kubota, Masato Su, Wei-Cheng Huang, Jia-Cing Chiu, Tien-Lung Han, Hsieh-Cheng Chen, Li-Chyong Chen, Chin-Ti Lee, Jiun-Haw |
description | Nonmixed planar heterojunction (PHJ) small-molecule organic photovoltaics (OPVs) with 96% internal quantum efficiency (at 595nm) and 4.77% power conversion efficiency (PCE) have been demonstrated. In addition to boron subphthalocyanine chloride (SubPc) and C60 as electron donor and acceptor materials, respectively, PHJ OPVs contain an ultrathin (2nm) buffer layer of bis-(naphthylphenylaminophenyl)fumaronitrile (NPAFN) between the indium tin oxide (ITO) anode and the donor layer (SubPc). Compared with copper phthalocyanine (CuPc) or α-naphthylphenylbiphenyl diamine (NPB) buffer layers, the NPAFN buffer layer blocks the exciton diffusion from the SubPc electron donor layer to the ITO anode more effectively and considerably improves the short circuit current (JSC) from 5.96 (without an NPAFN layer) to 7.70mA/cm2 (with a 4-mm-thick NPAFN layer ). In addition, experimental results indicated that the NPAFN buffer layer reduces the crystallization, or stacking, of the SubPc electron donor, thereby limiting the reverse saturation current and elevating the open circuit voltage (VOC) from 1.01 (without an NPAFN layer) to 1.08V (with a-2-nm thick NPAFN layer). However, series resistance (RS) of the OPV monotonically increases with increasing NPAFN layer thickness. The performance of the OPV is optimized when the NPAFN buffer layer thickness is 2nm. Compared with a SubPc–C60 PHJ OPV without an NPAFN buffer layer, the PCE of a OPV with a buffer layer increases by 22% from 3.96% to 4.77%, with a concurrent increase in JSC (from 5.96 to 7.02mA/cm2) and VOC (from 1.01 to 1.08V). However, a decrease in RS (from 10.21 to 14.95Ωcm2) and in fill factor (from 65% to 63%) is also observed.
•Planar heterojunction small-molecular OPV device with the device efficiency of 4.77%.•A new type anodic buffer layer as exciton buffer layer of the OPV devices.•Internal quantum efficiency of the device reached 96% at 590nm. |
doi_str_mv | 10.1016/j.solmat.2015.01.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692341287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092702481500015X</els_id><sourcerecordid>1692341287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-ef000589cf7d2b2179c2c4e3dfca54765717aec63696fcc88830e05f0d05365c3</originalsourceid><addsrcrecordid>eNqNUU2LFDEQDaLguPoPPOQieOnZfPRHchGWxS9Y8KLnkKmubGfoTnqT9Oj8Hv-oWcezLFSqEurVK14eIW8523PG--vjPsd5sWUvGO_2jNfgz8iOq0E3Umr1nOyYFkPDRKteklc5Hxljopftjvy-oQF_Uhvi6IEeNucw0dmea66EmLydqYuJhhiaxf_Cka6zDTbRCWs3HrcAxcdAYZpjiod6As3bYZ3KZOcIZxt8QBrTfb0AXadY4inOxdaHhcnjyYd7qvt31IfKF-q2h82Gsi0UnfPgMcD5NXnh7Jzxzb96RX58-vj99ktz9-3z19ubuwZaqUqDrqrqlAY3jOIg-KBBQItydGC7dui7gQ8WoZe97h2AUkoyZJ1jI-tk34G8Iu8vvGuKDxvmYhafAecqGOOWDe-1kC0XangKlAstlOoqtL1AIcWcEzqzJr_YdDacmUf7zNFc7DOP9hnGa_A69uEyhlXxyWMy-e9v4OgTQjFj9P8n-AODlqm7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691292885</pqid></control><display><type>article</type><title>A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lin, Chi-Feng ; Liu, Shun-Wei ; Lee, Chih-Chien ; Sakurai, Takeaki ; Kubota, Masato ; Su, Wei-Cheng ; Huang, Jia-Cing ; Chiu, Tien-Lung ; Han, Hsieh-Cheng ; Chen, Li-Chyong ; Chen, Chin-Ti ; Lee, Jiun-Haw</creator><creatorcontrib>Lin, Chi-Feng ; Liu, Shun-Wei ; Lee, Chih-Chien ; Sakurai, Takeaki ; Kubota, Masato ; Su, Wei-Cheng ; Huang, Jia-Cing ; Chiu, Tien-Lung ; Han, Hsieh-Cheng ; Chen, Li-Chyong ; Chen, Chin-Ti ; Lee, Jiun-Haw</creatorcontrib><description>Nonmixed planar heterojunction (PHJ) small-molecule organic photovoltaics (OPVs) with 96% internal quantum efficiency (at 595nm) and 4.77% power conversion efficiency (PCE) have been demonstrated. In addition to boron subphthalocyanine chloride (SubPc) and C60 as electron donor and acceptor materials, respectively, PHJ OPVs contain an ultrathin (2nm) buffer layer of bis-(naphthylphenylaminophenyl)fumaronitrile (NPAFN) between the indium tin oxide (ITO) anode and the donor layer (SubPc). Compared with copper phthalocyanine (CuPc) or α-naphthylphenylbiphenyl diamine (NPB) buffer layers, the NPAFN buffer layer blocks the exciton diffusion from the SubPc electron donor layer to the ITO anode more effectively and considerably improves the short circuit current (JSC) from 5.96 (without an NPAFN layer) to 7.70mA/cm2 (with a 4-mm-thick NPAFN layer ). In addition, experimental results indicated that the NPAFN buffer layer reduces the crystallization, or stacking, of the SubPc electron donor, thereby limiting the reverse saturation current and elevating the open circuit voltage (VOC) from 1.01 (without an NPAFN layer) to 1.08V (with a-2-nm thick NPAFN layer). However, series resistance (RS) of the OPV monotonically increases with increasing NPAFN layer thickness. The performance of the OPV is optimized when the NPAFN buffer layer thickness is 2nm. Compared with a SubPc–C60 PHJ OPV without an NPAFN buffer layer, the PCE of a OPV with a buffer layer increases by 22% from 3.96% to 4.77%, with a concurrent increase in JSC (from 5.96 to 7.02mA/cm2) and VOC (from 1.01 to 1.08V). However, a decrease in RS (from 10.21 to 14.95Ωcm2) and in fill factor (from 65% to 63%) is also observed.
•Planar heterojunction small-molecular OPV device with the device efficiency of 4.77%.•A new type anodic buffer layer as exciton buffer layer of the OPV devices.•Internal quantum efficiency of the device reached 96% at 590nm.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2015.01.011</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>ANODES ; Anodic buffer layer ; Buffer layers ; CHLORIDES ; COPPER PHTHALOCYANINE ; Heterojunctions ; Indium tin oxide ; INTERFACES ; Internal quantum efficiency ; ORGANIC COMPOUNDS ; Organic photovoltaic ; Photovoltaic cells ; Planer heterojunction ; Quantum efficiency ; Solar cells ; Volatile organic compounds</subject><ispartof>Solar energy materials and solar cells, 2015-06, Vol.137, p.138-145</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-ef000589cf7d2b2179c2c4e3dfca54765717aec63696fcc88830e05f0d05365c3</citedby><cites>FETCH-LOGICAL-c438t-ef000589cf7d2b2179c2c4e3dfca54765717aec63696fcc88830e05f0d05365c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2015.01.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Lin, Chi-Feng</creatorcontrib><creatorcontrib>Liu, Shun-Wei</creatorcontrib><creatorcontrib>Lee, Chih-Chien</creatorcontrib><creatorcontrib>Sakurai, Takeaki</creatorcontrib><creatorcontrib>Kubota, Masato</creatorcontrib><creatorcontrib>Su, Wei-Cheng</creatorcontrib><creatorcontrib>Huang, Jia-Cing</creatorcontrib><creatorcontrib>Chiu, Tien-Lung</creatorcontrib><creatorcontrib>Han, Hsieh-Cheng</creatorcontrib><creatorcontrib>Chen, Li-Chyong</creatorcontrib><creatorcontrib>Chen, Chin-Ti</creatorcontrib><creatorcontrib>Lee, Jiun-Haw</creatorcontrib><title>A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency</title><title>Solar energy materials and solar cells</title><description>Nonmixed planar heterojunction (PHJ) small-molecule organic photovoltaics (OPVs) with 96% internal quantum efficiency (at 595nm) and 4.77% power conversion efficiency (PCE) have been demonstrated. In addition to boron subphthalocyanine chloride (SubPc) and C60 as electron donor and acceptor materials, respectively, PHJ OPVs contain an ultrathin (2nm) buffer layer of bis-(naphthylphenylaminophenyl)fumaronitrile (NPAFN) between the indium tin oxide (ITO) anode and the donor layer (SubPc). Compared with copper phthalocyanine (CuPc) or α-naphthylphenylbiphenyl diamine (NPB) buffer layers, the NPAFN buffer layer blocks the exciton diffusion from the SubPc electron donor layer to the ITO anode more effectively and considerably improves the short circuit current (JSC) from 5.96 (without an NPAFN layer) to 7.70mA/cm2 (with a 4-mm-thick NPAFN layer ). In addition, experimental results indicated that the NPAFN buffer layer reduces the crystallization, or stacking, of the SubPc electron donor, thereby limiting the reverse saturation current and elevating the open circuit voltage (VOC) from 1.01 (without an NPAFN layer) to 1.08V (with a-2-nm thick NPAFN layer). However, series resistance (RS) of the OPV monotonically increases with increasing NPAFN layer thickness. The performance of the OPV is optimized when the NPAFN buffer layer thickness is 2nm. Compared with a SubPc–C60 PHJ OPV without an NPAFN buffer layer, the PCE of a OPV with a buffer layer increases by 22% from 3.96% to 4.77%, with a concurrent increase in JSC (from 5.96 to 7.02mA/cm2) and VOC (from 1.01 to 1.08V). However, a decrease in RS (from 10.21 to 14.95Ωcm2) and in fill factor (from 65% to 63%) is also observed.
•Planar heterojunction small-molecular OPV device with the device efficiency of 4.77%.•A new type anodic buffer layer as exciton buffer layer of the OPV devices.•Internal quantum efficiency of the device reached 96% at 590nm.</description><subject>ANODES</subject><subject>Anodic buffer layer</subject><subject>Buffer layers</subject><subject>CHLORIDES</subject><subject>COPPER PHTHALOCYANINE</subject><subject>Heterojunctions</subject><subject>Indium tin oxide</subject><subject>INTERFACES</subject><subject>Internal quantum efficiency</subject><subject>ORGANIC COMPOUNDS</subject><subject>Organic photovoltaic</subject><subject>Photovoltaic cells</subject><subject>Planer heterojunction</subject><subject>Quantum efficiency</subject><subject>Solar cells</subject><subject>Volatile organic compounds</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNUU2LFDEQDaLguPoPPOQieOnZfPRHchGWxS9Y8KLnkKmubGfoTnqT9Oj8Hv-oWcezLFSqEurVK14eIW8523PG--vjPsd5sWUvGO_2jNfgz8iOq0E3Umr1nOyYFkPDRKteklc5Hxljopftjvy-oQF_Uhvi6IEeNucw0dmea66EmLydqYuJhhiaxf_Cka6zDTbRCWs3HrcAxcdAYZpjiod6As3bYZ3KZOcIZxt8QBrTfb0AXadY4inOxdaHhcnjyYd7qvt31IfKF-q2h82Gsi0UnfPgMcD5NXnh7Jzxzb96RX58-vj99ktz9-3z19ubuwZaqUqDrqrqlAY3jOIg-KBBQItydGC7dui7gQ8WoZe97h2AUkoyZJ1jI-tk34G8Iu8vvGuKDxvmYhafAecqGOOWDe-1kC0XangKlAstlOoqtL1AIcWcEzqzJr_YdDacmUf7zNFc7DOP9hnGa_A69uEyhlXxyWMy-e9v4OgTQjFj9P8n-AODlqm7</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Lin, Chi-Feng</creator><creator>Liu, Shun-Wei</creator><creator>Lee, Chih-Chien</creator><creator>Sakurai, Takeaki</creator><creator>Kubota, Masato</creator><creator>Su, Wei-Cheng</creator><creator>Huang, Jia-Cing</creator><creator>Chiu, Tien-Lung</creator><creator>Han, Hsieh-Cheng</creator><creator>Chen, Li-Chyong</creator><creator>Chen, Chin-Ti</creator><creator>Lee, Jiun-Haw</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150601</creationdate><title>A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency</title><author>Lin, Chi-Feng ; Liu, Shun-Wei ; Lee, Chih-Chien ; Sakurai, Takeaki ; Kubota, Masato ; Su, Wei-Cheng ; Huang, Jia-Cing ; Chiu, Tien-Lung ; Han, Hsieh-Cheng ; Chen, Li-Chyong ; Chen, Chin-Ti ; Lee, Jiun-Haw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-ef000589cf7d2b2179c2c4e3dfca54765717aec63696fcc88830e05f0d05365c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ANODES</topic><topic>Anodic buffer layer</topic><topic>Buffer layers</topic><topic>CHLORIDES</topic><topic>COPPER PHTHALOCYANINE</topic><topic>Heterojunctions</topic><topic>Indium tin oxide</topic><topic>INTERFACES</topic><topic>Internal quantum efficiency</topic><topic>ORGANIC COMPOUNDS</topic><topic>Organic photovoltaic</topic><topic>Photovoltaic cells</topic><topic>Planer heterojunction</topic><topic>Quantum efficiency</topic><topic>Solar cells</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Chi-Feng</creatorcontrib><creatorcontrib>Liu, Shun-Wei</creatorcontrib><creatorcontrib>Lee, Chih-Chien</creatorcontrib><creatorcontrib>Sakurai, Takeaki</creatorcontrib><creatorcontrib>Kubota, Masato</creatorcontrib><creatorcontrib>Su, Wei-Cheng</creatorcontrib><creatorcontrib>Huang, Jia-Cing</creatorcontrib><creatorcontrib>Chiu, Tien-Lung</creatorcontrib><creatorcontrib>Han, Hsieh-Cheng</creatorcontrib><creatorcontrib>Chen, Li-Chyong</creatorcontrib><creatorcontrib>Chen, Chin-Ti</creatorcontrib><creatorcontrib>Lee, Jiun-Haw</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Chi-Feng</au><au>Liu, Shun-Wei</au><au>Lee, Chih-Chien</au><au>Sakurai, Takeaki</au><au>Kubota, Masato</au><au>Su, Wei-Cheng</au><au>Huang, Jia-Cing</au><au>Chiu, Tien-Lung</au><au>Han, Hsieh-Cheng</au><au>Chen, Li-Chyong</au><au>Chen, Chin-Ti</au><au>Lee, Jiun-Haw</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>137</volume><spage>138</spage><epage>145</epage><pages>138-145</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Nonmixed planar heterojunction (PHJ) small-molecule organic photovoltaics (OPVs) with 96% internal quantum efficiency (at 595nm) and 4.77% power conversion efficiency (PCE) have been demonstrated. In addition to boron subphthalocyanine chloride (SubPc) and C60 as electron donor and acceptor materials, respectively, PHJ OPVs contain an ultrathin (2nm) buffer layer of bis-(naphthylphenylaminophenyl)fumaronitrile (NPAFN) between the indium tin oxide (ITO) anode and the donor layer (SubPc). Compared with copper phthalocyanine (CuPc) or α-naphthylphenylbiphenyl diamine (NPB) buffer layers, the NPAFN buffer layer blocks the exciton diffusion from the SubPc electron donor layer to the ITO anode more effectively and considerably improves the short circuit current (JSC) from 5.96 (without an NPAFN layer) to 7.70mA/cm2 (with a 4-mm-thick NPAFN layer ). In addition, experimental results indicated that the NPAFN buffer layer reduces the crystallization, or stacking, of the SubPc electron donor, thereby limiting the reverse saturation current and elevating the open circuit voltage (VOC) from 1.01 (without an NPAFN layer) to 1.08V (with a-2-nm thick NPAFN layer). However, series resistance (RS) of the OPV monotonically increases with increasing NPAFN layer thickness. The performance of the OPV is optimized when the NPAFN buffer layer thickness is 2nm. Compared with a SubPc–C60 PHJ OPV without an NPAFN buffer layer, the PCE of a OPV with a buffer layer increases by 22% from 3.96% to 4.77%, with a concurrent increase in JSC (from 5.96 to 7.02mA/cm2) and VOC (from 1.01 to 1.08V). However, a decrease in RS (from 10.21 to 14.95Ωcm2) and in fill factor (from 65% to 63%) is also observed.
•Planar heterojunction small-molecular OPV device with the device efficiency of 4.77%.•A new type anodic buffer layer as exciton buffer layer of the OPV devices.•Internal quantum efficiency of the device reached 96% at 590nm.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2015.01.011</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2015-06, Vol.137, p.138-145 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692341287 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | ANODES Anodic buffer layer Buffer layers CHLORIDES COPPER PHTHALOCYANINE Heterojunctions Indium tin oxide INTERFACES Internal quantum efficiency ORGANIC COMPOUNDS Organic photovoltaic Photovoltaic cells Planer heterojunction Quantum efficiency Solar cells Volatile organic compounds |
title | A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20anodic%20buffer%20layer%20material%20for%20non-mixed%20planar%20heterojunction%20chloroboron%20subphthalocyanine%20organic%20photovoltaic%20achieving%2096%25%20internal%20quantum%20efficiency&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Lin,%20Chi-Feng&rft.date=2015-06-01&rft.volume=137&rft.spage=138&rft.epage=145&rft.pages=138-145&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2015.01.011&rft_dat=%3Cproquest_cross%3E1692341287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691292885&rft_id=info:pmid/&rft_els_id=S092702481500015X&rfr_iscdi=true |