Modeling ethanol–blended gasoline droplet evaporation using COSMO-RS theory and computation fluid dynamics
A new single droplet evaporation model for ethanol–blended gasoline is presented. The real liquid mixture model based on the quantum chemical ab initio description of non-ideality of liquid phase without need of any adjustable parameters. The multi-scale model applies the COSMO-RS theory (micro leve...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2015-05, Vol.84, p.1019-1029 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1029 |
---|---|
container_issue | |
container_start_page | 1019 |
container_title | International journal of heat and mass transfer |
container_volume | 84 |
creator | Járvás, Gábor Kontos, János Hancsók, Jenő Dallos, András |
description | A new single droplet evaporation model for ethanol–blended gasoline is presented. The real liquid mixture model based on the quantum chemical ab initio description of non-ideality of liquid phase without need of any adjustable parameters. The multi-scale model applies the COSMO-RS theory (micro level) for the estimation of vapor–liquid equilibrium of non-ideal solutions and the Maxwell–Stefan diffusion and convection theory for the calculation of gas phase transport (macro level) characteristics of the components. Solvation mixture thermodynamics and computational fluid dynamics (CFD) simulation were used to perform the calculations for the quasi-equilibrium evaporation of compounds from curved liquid surface. Physical–chemical properties, which are difficult to measure experimentally the activity coefficients of the components, the liquid and vapor phase compositions, the cumulative and components evaporation fluxes among others were computed during the evaporation process. A new approach for calculating the temperature-depression of evaporating droplets is also reported. The model was validated against experimental evaporation data of multi-component alcohol–alkane mixtures. The validated model was used to predict the impact of ethanol on volatilities of droplets of ethanol–blended model gasoline. The estimated non-linear trend in vapor pressures of ethanol–blended model gasoline is consistent with the experimentally observed effects of ethanol addition on dry vapor pressure equivalent values of gasoline base stock samples. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2014.12.046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692340475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931014011545</els_id><sourcerecordid>1692340475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-67d7afb79c4dbcc39cfd9659de08d888d019a32d40fc154b4f86c5f8d0e7c4dd3</originalsourceid><addsrcrecordid>eNqNkE1uFDEQhS0EEkPgDl5m043d_96BRkBAiUYisLY8rnLGI7fd2O5Is-MO3JCT4NGwyyarUtV775PqEXLNWc0ZH94fa3s8oMqzSilH5ZPBWDeMdzVvatYNL8iGT6OoGj6Jl2TDGB8r0XL2mrxJ6Xhei2lD3F0AdNY_UMwH5YP7-_vP3qEHBPqgUigSUohhcZgpPqolRJVt8HRN59B2d3-3q77f03zAEE9UeaA6zMuaLy7jVgsUTl7NVqe35JVRLuG7__OK_Pz86cf2prrdffm6_Xhb6XbsczWMMCqzH4XuYK91K7QBMfQCkE0wTRMwLlTbQMeM5n2378w06N6UO44lAu0Vub5wlxh-rZiynG3S6JzyGNYk-SCatmPd2Bfrh4tVx5BSRCOXaGcVT5IzeS5aHuXTouW5aMkbWTosiG8XBJaXHm1Rk7boNYKNqLOEYJ8P-wfYnJfN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692340475</pqid></control><display><type>article</type><title>Modeling ethanol–blended gasoline droplet evaporation using COSMO-RS theory and computation fluid dynamics</title><source>Elsevier ScienceDirect Journals</source><creator>Járvás, Gábor ; Kontos, János ; Hancsók, Jenő ; Dallos, András</creator><creatorcontrib>Járvás, Gábor ; Kontos, János ; Hancsók, Jenő ; Dallos, András</creatorcontrib><description>A new single droplet evaporation model for ethanol–blended gasoline is presented. The real liquid mixture model based on the quantum chemical ab initio description of non-ideality of liquid phase without need of any adjustable parameters. The multi-scale model applies the COSMO-RS theory (micro level) for the estimation of vapor–liquid equilibrium of non-ideal solutions and the Maxwell–Stefan diffusion and convection theory for the calculation of gas phase transport (macro level) characteristics of the components. Solvation mixture thermodynamics and computational fluid dynamics (CFD) simulation were used to perform the calculations for the quasi-equilibrium evaporation of compounds from curved liquid surface. Physical–chemical properties, which are difficult to measure experimentally the activity coefficients of the components, the liquid and vapor phase compositions, the cumulative and components evaporation fluxes among others were computed during the evaporation process. A new approach for calculating the temperature-depression of evaporating droplets is also reported. The model was validated against experimental evaporation data of multi-component alcohol–alkane mixtures. The validated model was used to predict the impact of ethanol on volatilities of droplets of ethanol–blended model gasoline. The estimated non-linear trend in vapor pressures of ethanol–blended model gasoline is consistent with the experimentally observed effects of ethanol addition on dry vapor pressure equivalent values of gasoline base stock samples.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2014.12.046</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computational fluid dynamics ; COSMO-RS ; Droplet evaporation model ; Droplets ; Ethanol ; Ethanol–blended model gasoline ; Ethyl alcohol ; Evaporation ; Gasoline ; Liquids ; Mathematical models ; Non-ideal liquid mixtures ; Vapor pressure</subject><ispartof>International journal of heat and mass transfer, 2015-05, Vol.84, p.1019-1029</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-67d7afb79c4dbcc39cfd9659de08d888d019a32d40fc154b4f86c5f8d0e7c4dd3</citedby><cites>FETCH-LOGICAL-c375t-67d7afb79c4dbcc39cfd9659de08d888d019a32d40fc154b4f86c5f8d0e7c4dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931014011545$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Járvás, Gábor</creatorcontrib><creatorcontrib>Kontos, János</creatorcontrib><creatorcontrib>Hancsók, Jenő</creatorcontrib><creatorcontrib>Dallos, András</creatorcontrib><title>Modeling ethanol–blended gasoline droplet evaporation using COSMO-RS theory and computation fluid dynamics</title><title>International journal of heat and mass transfer</title><description>A new single droplet evaporation model for ethanol–blended gasoline is presented. The real liquid mixture model based on the quantum chemical ab initio description of non-ideality of liquid phase without need of any adjustable parameters. The multi-scale model applies the COSMO-RS theory (micro level) for the estimation of vapor–liquid equilibrium of non-ideal solutions and the Maxwell–Stefan diffusion and convection theory for the calculation of gas phase transport (macro level) characteristics of the components. Solvation mixture thermodynamics and computational fluid dynamics (CFD) simulation were used to perform the calculations for the quasi-equilibrium evaporation of compounds from curved liquid surface. Physical–chemical properties, which are difficult to measure experimentally the activity coefficients of the components, the liquid and vapor phase compositions, the cumulative and components evaporation fluxes among others were computed during the evaporation process. A new approach for calculating the temperature-depression of evaporating droplets is also reported. The model was validated against experimental evaporation data of multi-component alcohol–alkane mixtures. The validated model was used to predict the impact of ethanol on volatilities of droplets of ethanol–blended model gasoline. The estimated non-linear trend in vapor pressures of ethanol–blended model gasoline is consistent with the experimentally observed effects of ethanol addition on dry vapor pressure equivalent values of gasoline base stock samples.</description><subject>Computational fluid dynamics</subject><subject>COSMO-RS</subject><subject>Droplet evaporation model</subject><subject>Droplets</subject><subject>Ethanol</subject><subject>Ethanol–blended model gasoline</subject><subject>Ethyl alcohol</subject><subject>Evaporation</subject><subject>Gasoline</subject><subject>Liquids</subject><subject>Mathematical models</subject><subject>Non-ideal liquid mixtures</subject><subject>Vapor pressure</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkE1uFDEQhS0EEkPgDl5m043d_96BRkBAiUYisLY8rnLGI7fd2O5Is-MO3JCT4NGwyyarUtV775PqEXLNWc0ZH94fa3s8oMqzSilH5ZPBWDeMdzVvatYNL8iGT6OoGj6Jl2TDGB8r0XL2mrxJ6Xhei2lD3F0AdNY_UMwH5YP7-_vP3qEHBPqgUigSUohhcZgpPqolRJVt8HRN59B2d3-3q77f03zAEE9UeaA6zMuaLy7jVgsUTl7NVqe35JVRLuG7__OK_Pz86cf2prrdffm6_Xhb6XbsczWMMCqzH4XuYK91K7QBMfQCkE0wTRMwLlTbQMeM5n2378w06N6UO44lAu0Vub5wlxh-rZiynG3S6JzyGNYk-SCatmPd2Bfrh4tVx5BSRCOXaGcVT5IzeS5aHuXTouW5aMkbWTosiG8XBJaXHm1Rk7boNYKNqLOEYJ8P-wfYnJfN</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Járvás, Gábor</creator><creator>Kontos, János</creator><creator>Hancsók, Jenő</creator><creator>Dallos, András</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150501</creationdate><title>Modeling ethanol–blended gasoline droplet evaporation using COSMO-RS theory and computation fluid dynamics</title><author>Járvás, Gábor ; Kontos, János ; Hancsók, Jenő ; Dallos, András</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-67d7afb79c4dbcc39cfd9659de08d888d019a32d40fc154b4f86c5f8d0e7c4dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computational fluid dynamics</topic><topic>COSMO-RS</topic><topic>Droplet evaporation model</topic><topic>Droplets</topic><topic>Ethanol</topic><topic>Ethanol–blended model gasoline</topic><topic>Ethyl alcohol</topic><topic>Evaporation</topic><topic>Gasoline</topic><topic>Liquids</topic><topic>Mathematical models</topic><topic>Non-ideal liquid mixtures</topic><topic>Vapor pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Járvás, Gábor</creatorcontrib><creatorcontrib>Kontos, János</creatorcontrib><creatorcontrib>Hancsók, Jenő</creatorcontrib><creatorcontrib>Dallos, András</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Járvás, Gábor</au><au>Kontos, János</au><au>Hancsók, Jenő</au><au>Dallos, András</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling ethanol–blended gasoline droplet evaporation using COSMO-RS theory and computation fluid dynamics</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>84</volume><spage>1019</spage><epage>1029</epage><pages>1019-1029</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>A new single droplet evaporation model for ethanol–blended gasoline is presented. The real liquid mixture model based on the quantum chemical ab initio description of non-ideality of liquid phase without need of any adjustable parameters. The multi-scale model applies the COSMO-RS theory (micro level) for the estimation of vapor–liquid equilibrium of non-ideal solutions and the Maxwell–Stefan diffusion and convection theory for the calculation of gas phase transport (macro level) characteristics of the components. Solvation mixture thermodynamics and computational fluid dynamics (CFD) simulation were used to perform the calculations for the quasi-equilibrium evaporation of compounds from curved liquid surface. Physical–chemical properties, which are difficult to measure experimentally the activity coefficients of the components, the liquid and vapor phase compositions, the cumulative and components evaporation fluxes among others were computed during the evaporation process. A new approach for calculating the temperature-depression of evaporating droplets is also reported. The model was validated against experimental evaporation data of multi-component alcohol–alkane mixtures. The validated model was used to predict the impact of ethanol on volatilities of droplets of ethanol–blended model gasoline. The estimated non-linear trend in vapor pressures of ethanol–blended model gasoline is consistent with the experimentally observed effects of ethanol addition on dry vapor pressure equivalent values of gasoline base stock samples.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2014.12.046</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2015-05, Vol.84, p.1019-1029 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692340475 |
source | Elsevier ScienceDirect Journals |
subjects | Computational fluid dynamics COSMO-RS Droplet evaporation model Droplets Ethanol Ethanol–blended model gasoline Ethyl alcohol Evaporation Gasoline Liquids Mathematical models Non-ideal liquid mixtures Vapor pressure |
title | Modeling ethanol–blended gasoline droplet evaporation using COSMO-RS theory and computation fluid dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A20%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20ethanol%E2%80%93blended%20gasoline%20droplet%20evaporation%20using%20COSMO-RS%20theory%20and%20computation%20fluid%20dynamics&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=J%C3%A1rv%C3%A1s,%20G%C3%A1bor&rft.date=2015-05-01&rft.volume=84&rft.spage=1019&rft.epage=1029&rft.pages=1019-1029&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2014.12.046&rft_dat=%3Cproquest_cross%3E1692340475%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692340475&rft_id=info:pmid/&rft_els_id=S0017931014011545&rfr_iscdi=true |