Reaction-diffusion degradation model for delayed erosion of cross-linked polyanhydride biomaterials

We develop a theoretical model to explain the long induction interval of water intake that precedes the onset of erosion due to degradation caused by hydrolysis in the recently synthesized and studied cross-linked polyanhydrides. Various kinetic mechanisms are incorporated in the model in an attempt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2015-05, Vol.17 (2), p.13215-13222
Hauptverfasser: Domanskyi, Sergii, Poetz, Katie L, Shipp, Devon A, Privman, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13222
container_issue 2
container_start_page 13215
container_title Physical chemistry chemical physics : PCCP
container_volume 17
creator Domanskyi, Sergii
Poetz, Katie L
Shipp, Devon A
Privman, Vladimir
description We develop a theoretical model to explain the long induction interval of water intake that precedes the onset of erosion due to degradation caused by hydrolysis in the recently synthesized and studied cross-linked polyanhydrides. Various kinetic mechanisms are incorporated in the model in an attempt to explain the experimental data for the mass loss profile. Our key finding is that the observed long induction interval is attributable to the nonlinear dependence of the degradation rate constants on the local water concentration, which essentially amounts to the breakdown of the standard rate-equation approach, potential causes for which are then discussed. Our theoretical results offer physical insights into which microscopic studies will be required to supplement the presently available macroscopic mass-loss data in order to fully understand the origin of the observed behavior. Delayed erosion of highly cross-linked polyanhydrides is attributable to the nonlinear dependence of the degradation rates on water concentration.
doi_str_mv 10.1039/c5cp00473j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692337309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1681265401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-d0736efe0c0f1ebb3a73581db4b2e33dbe6c6f6f6100fc3cb0471663bed18a8f3</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMozji6ca_UnQjVm6ZNO0spPhlQRNcljxvt2E5qMrPovzfzcNyJZHEPJx8XzrmEHFO4pMDGVypTHUCas-kOGdKUs3gMRbq71TkfkAPvpwBAM8r2ySDJcs55TodEvaBQ89rOYl0bs_BBRRrfndBi6Uat1dhExrrgNqJHHaGzK8qaSAXp46aefQa_s00vZh-9drXGSNa2FXN0tWj8IdkzYeDRZo7I2-3Na3kfT57uHsrrSaxSSOexhpxxNAgKDEUpmchZVlAtU5kgY1oiV9yERwGMYkqGyJRzJlHTQhSGjcj5em_n7NcC_bxqa6-wacQM7cJXlI8TxnIG43-gBU14lgIN6MUaXaV1aKrO1a1wfUWhWvZflVn5vOr_McCnm70L2aLeoj-FB-BsDTivtr-_B6w6vcxx8hfDvgHn2peQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1681265401</pqid></control><display><type>article</type><title>Reaction-diffusion degradation model for delayed erosion of cross-linked polyanhydride biomaterials</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Domanskyi, Sergii ; Poetz, Katie L ; Shipp, Devon A ; Privman, Vladimir</creator><creatorcontrib>Domanskyi, Sergii ; Poetz, Katie L ; Shipp, Devon A ; Privman, Vladimir</creatorcontrib><description>We develop a theoretical model to explain the long induction interval of water intake that precedes the onset of erosion due to degradation caused by hydrolysis in the recently synthesized and studied cross-linked polyanhydrides. Various kinetic mechanisms are incorporated in the model in an attempt to explain the experimental data for the mass loss profile. Our key finding is that the observed long induction interval is attributable to the nonlinear dependence of the degradation rate constants on the local water concentration, which essentially amounts to the breakdown of the standard rate-equation approach, potential causes for which are then discussed. Our theoretical results offer physical insights into which microscopic studies will be required to supplement the presently available macroscopic mass-loss data in order to fully understand the origin of the observed behavior. Delayed erosion of highly cross-linked polyanhydrides is attributable to the nonlinear dependence of the degradation rates on water concentration.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp00473j</identifier><identifier>PMID: 25766671</identifier><language>eng</language><publisher>England</publisher><subject>Biocompatible Materials - chemistry ; Biomaterials ; Crosslinking ; Degradation ; Diffusion ; Erosion ; Hydrolysis ; Intervals ; Kinetics ; Models, Chemical ; Molecular Weight ; Nonlinear Dynamics ; Nonlinearity ; Polyanhydrides ; Polyanhydrides - chemistry ; Rate constants ; Surgical implants ; Water - chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2015-05, Vol.17 (2), p.13215-13222</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-d0736efe0c0f1ebb3a73581db4b2e33dbe6c6f6f6100fc3cb0471663bed18a8f3</citedby><cites>FETCH-LOGICAL-c404t-d0736efe0c0f1ebb3a73581db4b2e33dbe6c6f6f6100fc3cb0471663bed18a8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25766671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Domanskyi, Sergii</creatorcontrib><creatorcontrib>Poetz, Katie L</creatorcontrib><creatorcontrib>Shipp, Devon A</creatorcontrib><creatorcontrib>Privman, Vladimir</creatorcontrib><title>Reaction-diffusion degradation model for delayed erosion of cross-linked polyanhydride biomaterials</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>We develop a theoretical model to explain the long induction interval of water intake that precedes the onset of erosion due to degradation caused by hydrolysis in the recently synthesized and studied cross-linked polyanhydrides. Various kinetic mechanisms are incorporated in the model in an attempt to explain the experimental data for the mass loss profile. Our key finding is that the observed long induction interval is attributable to the nonlinear dependence of the degradation rate constants on the local water concentration, which essentially amounts to the breakdown of the standard rate-equation approach, potential causes for which are then discussed. Our theoretical results offer physical insights into which microscopic studies will be required to supplement the presently available macroscopic mass-loss data in order to fully understand the origin of the observed behavior. Delayed erosion of highly cross-linked polyanhydrides is attributable to the nonlinear dependence of the degradation rates on water concentration.</description><subject>Biocompatible Materials - chemistry</subject><subject>Biomaterials</subject><subject>Crosslinking</subject><subject>Degradation</subject><subject>Diffusion</subject><subject>Erosion</subject><subject>Hydrolysis</subject><subject>Intervals</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>Molecular Weight</subject><subject>Nonlinear Dynamics</subject><subject>Nonlinearity</subject><subject>Polyanhydrides</subject><subject>Polyanhydrides - chemistry</subject><subject>Rate constants</subject><subject>Surgical implants</subject><subject>Water - chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtLxDAUhYMozji6ca_UnQjVm6ZNO0spPhlQRNcljxvt2E5qMrPovzfzcNyJZHEPJx8XzrmEHFO4pMDGVypTHUCas-kOGdKUs3gMRbq71TkfkAPvpwBAM8r2ySDJcs55TodEvaBQ89rOYl0bs_BBRRrfndBi6Uat1dhExrrgNqJHHaGzK8qaSAXp46aefQa_s00vZh-9drXGSNa2FXN0tWj8IdkzYeDRZo7I2-3Na3kfT57uHsrrSaxSSOexhpxxNAgKDEUpmchZVlAtU5kgY1oiV9yERwGMYkqGyJRzJlHTQhSGjcj5em_n7NcC_bxqa6-wacQM7cJXlI8TxnIG43-gBU14lgIN6MUaXaV1aKrO1a1wfUWhWvZflVn5vOr_McCnm70L2aLeoj-FB-BsDTivtr-_B6w6vcxx8hfDvgHn2peQ</recordid><startdate>20150528</startdate><enddate>20150528</enddate><creator>Domanskyi, Sergii</creator><creator>Poetz, Katie L</creator><creator>Shipp, Devon A</creator><creator>Privman, Vladimir</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150528</creationdate><title>Reaction-diffusion degradation model for delayed erosion of cross-linked polyanhydride biomaterials</title><author>Domanskyi, Sergii ; Poetz, Katie L ; Shipp, Devon A ; Privman, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-d0736efe0c0f1ebb3a73581db4b2e33dbe6c6f6f6100fc3cb0471663bed18a8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biocompatible Materials - chemistry</topic><topic>Biomaterials</topic><topic>Crosslinking</topic><topic>Degradation</topic><topic>Diffusion</topic><topic>Erosion</topic><topic>Hydrolysis</topic><topic>Intervals</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>Molecular Weight</topic><topic>Nonlinear Dynamics</topic><topic>Nonlinearity</topic><topic>Polyanhydrides</topic><topic>Polyanhydrides - chemistry</topic><topic>Rate constants</topic><topic>Surgical implants</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Domanskyi, Sergii</creatorcontrib><creatorcontrib>Poetz, Katie L</creatorcontrib><creatorcontrib>Shipp, Devon A</creatorcontrib><creatorcontrib>Privman, Vladimir</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Domanskyi, Sergii</au><au>Poetz, Katie L</au><au>Shipp, Devon A</au><au>Privman, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reaction-diffusion degradation model for delayed erosion of cross-linked polyanhydride biomaterials</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2015-05-28</date><risdate>2015</risdate><volume>17</volume><issue>2</issue><spage>13215</spage><epage>13222</epage><pages>13215-13222</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We develop a theoretical model to explain the long induction interval of water intake that precedes the onset of erosion due to degradation caused by hydrolysis in the recently synthesized and studied cross-linked polyanhydrides. Various kinetic mechanisms are incorporated in the model in an attempt to explain the experimental data for the mass loss profile. Our key finding is that the observed long induction interval is attributable to the nonlinear dependence of the degradation rate constants on the local water concentration, which essentially amounts to the breakdown of the standard rate-equation approach, potential causes for which are then discussed. Our theoretical results offer physical insights into which microscopic studies will be required to supplement the presently available macroscopic mass-loss data in order to fully understand the origin of the observed behavior. Delayed erosion of highly cross-linked polyanhydrides is attributable to the nonlinear dependence of the degradation rates on water concentration.</abstract><cop>England</cop><pmid>25766671</pmid><doi>10.1039/c5cp00473j</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2015-05, Vol.17 (2), p.13215-13222
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_1692337309
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Biocompatible Materials - chemistry
Biomaterials
Crosslinking
Degradation
Diffusion
Erosion
Hydrolysis
Intervals
Kinetics
Models, Chemical
Molecular Weight
Nonlinear Dynamics
Nonlinearity
Polyanhydrides
Polyanhydrides - chemistry
Rate constants
Surgical implants
Water - chemistry
title Reaction-diffusion degradation model for delayed erosion of cross-linked polyanhydride biomaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reaction-diffusion%20degradation%20model%20for%20delayed%20erosion%20of%20cross-linked%20polyanhydride%20biomaterials&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Domanskyi,%20Sergii&rft.date=2015-05-28&rft.volume=17&rft.issue=2&rft.spage=13215&rft.epage=13222&rft.pages=13215-13222&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp00473j&rft_dat=%3Cproquest_cross%3E1681265401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1681265401&rft_id=info:pmid/25766671&rfr_iscdi=true