Experimental analysis of the influence of accumulated upper hot layer on the maximum ceiling gas temperature by a modified virtual source origin concept

This paper presents an experimental investigation to explore the influence of an accumulated hot upper layer on the maximum ceiling gas temperature of buoyancy-driven thermal flow in a reduced scale tunnel model. Experimental results show that the maximum excess temperature changes small with the de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2015-05, Vol.84, p.262-270
Hauptverfasser: Gao, Z.H., Ji, J., Fan, C.G., Sun, J.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 270
container_issue
container_start_page 262
container_title International journal of heat and mass transfer
container_volume 84
creator Gao, Z.H.
Ji, J.
Fan, C.G.
Sun, J.H.
description This paper presents an experimental investigation to explore the influence of an accumulated hot upper layer on the maximum ceiling gas temperature of buoyancy-driven thermal flow in a reduced scale tunnel model. Experimental results show that the maximum excess temperature changes small with the decreasing of distance between fire source and the nearest sidewall until fire is flush with sidewall, then the maximum ceiling gas temperature increases significantly. A modified concept of virtual origin is introduced for calculating the maximum ceiling gas temperature in the presence of a hot upper layer beneath ceiling. On the basis of the experimental data and theoretical analysis, correlations of the virtual source location are proposed for fire placed out of touch and flush with sidewall, respectively. Further, the predicted maximum ceiling gas temperatures are compared with the measured ones for fire out of touch with sidewall as well as the data from other model-scale and full-scale tests. The results show that there is a good agreement when the modified dimensionless heat release rate, Q̇mod, which expresses the relative size of heat release rate compared to the tunnel geometry, is smaller than 0.09, otherwise the predicted maximum temperatures will be lower than the experimental values because of the impingement of intermittent flame on the tunnel ceiling.
doi_str_mv 10.1016/j.ijheatmasstransfer.2015.01.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692337184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931015000137</els_id><sourcerecordid>1692337184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-6f8a13ddc3f9781d41a73dac25603144e57074dcff52b4069d7ea6aed69e91413</originalsourceid><addsrcrecordid>eNqNkctuFDEQRVsRSBkS_sHLbLpx9bt3oCgQUKRsYG1V7PKMR-1240eU-RM-N26GHZusXC7fOleuWxQ3wCvg0H86VuZ4IIwWQ4gel6DJVzWHruJQcd5fFDsYh6msYZzeFTvOYSinBvhl8SGE43blbb8r_ty9rOSNpSXizHDB-RRMYE6zeCBmFj0nWiRtDZQy2TRjJMXSmqfYwUU24ylXbvmrt_hibLJMkpnNsmd7DCySzVqMyRN7OjFk1imjTYY8Gx9Tdg0u-c3Cm71ZmHTZb43XxXuNc6CP_86r4tfXu5-39-XD47fvt18eStkMXSx7PSI0SslGT8MIqgUcGoWy7nreQNtSN_ChVVLrrn5qeT-pgbBHUv1EE7TQXBU3Z-7q3e9EIQprgqR5xoVcCgL6qW6aAcY2Sz-fpdK7EDxpsebNoT8J4GILRRzF_6GILRTBQeRQMuLHGUH5S88mvwZptgUr40lGoZx5O-wVWT6mhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692337184</pqid></control><display><type>article</type><title>Experimental analysis of the influence of accumulated upper hot layer on the maximum ceiling gas temperature by a modified virtual source origin concept</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gao, Z.H. ; Ji, J. ; Fan, C.G. ; Sun, J.H.</creator><creatorcontrib>Gao, Z.H. ; Ji, J. ; Fan, C.G. ; Sun, J.H.</creatorcontrib><description>This paper presents an experimental investigation to explore the influence of an accumulated hot upper layer on the maximum ceiling gas temperature of buoyancy-driven thermal flow in a reduced scale tunnel model. Experimental results show that the maximum excess temperature changes small with the decreasing of distance between fire source and the nearest sidewall until fire is flush with sidewall, then the maximum ceiling gas temperature increases significantly. A modified concept of virtual origin is introduced for calculating the maximum ceiling gas temperature in the presence of a hot upper layer beneath ceiling. On the basis of the experimental data and theoretical analysis, correlations of the virtual source location are proposed for fire placed out of touch and flush with sidewall, respectively. Further, the predicted maximum ceiling gas temperatures are compared with the measured ones for fire out of touch with sidewall as well as the data from other model-scale and full-scale tests. The results show that there is a good agreement when the modified dimensionless heat release rate, Q̇mod, which expresses the relative size of heat release rate compared to the tunnel geometry, is smaller than 0.09, otherwise the predicted maximum temperatures will be lower than the experimental values because of the impingement of intermittent flame on the tunnel ceiling.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2015.01.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Ceiling ; Ceilings ; Fires ; Flushing ; Gas temperature ; Heat release rate ; Mathematical models ; Maximum temperature ; Origins ; Sidewall ; Thermal flow ; Touch ; Transverse location ; Tunnels (transportation)</subject><ispartof>International journal of heat and mass transfer, 2015-05, Vol.84, p.262-270</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-6f8a13ddc3f9781d41a73dac25603144e57074dcff52b4069d7ea6aed69e91413</citedby><cites>FETCH-LOGICAL-c375t-6f8a13ddc3f9781d41a73dac25603144e57074dcff52b4069d7ea6aed69e91413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.01.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Gao, Z.H.</creatorcontrib><creatorcontrib>Ji, J.</creatorcontrib><creatorcontrib>Fan, C.G.</creatorcontrib><creatorcontrib>Sun, J.H.</creatorcontrib><title>Experimental analysis of the influence of accumulated upper hot layer on the maximum ceiling gas temperature by a modified virtual source origin concept</title><title>International journal of heat and mass transfer</title><description>This paper presents an experimental investigation to explore the influence of an accumulated hot upper layer on the maximum ceiling gas temperature of buoyancy-driven thermal flow in a reduced scale tunnel model. Experimental results show that the maximum excess temperature changes small with the decreasing of distance between fire source and the nearest sidewall until fire is flush with sidewall, then the maximum ceiling gas temperature increases significantly. A modified concept of virtual origin is introduced for calculating the maximum ceiling gas temperature in the presence of a hot upper layer beneath ceiling. On the basis of the experimental data and theoretical analysis, correlations of the virtual source location are proposed for fire placed out of touch and flush with sidewall, respectively. Further, the predicted maximum ceiling gas temperatures are compared with the measured ones for fire out of touch with sidewall as well as the data from other model-scale and full-scale tests. The results show that there is a good agreement when the modified dimensionless heat release rate, Q̇mod, which expresses the relative size of heat release rate compared to the tunnel geometry, is smaller than 0.09, otherwise the predicted maximum temperatures will be lower than the experimental values because of the impingement of intermittent flame on the tunnel ceiling.</description><subject>Ceiling</subject><subject>Ceilings</subject><subject>Fires</subject><subject>Flushing</subject><subject>Gas temperature</subject><subject>Heat release rate</subject><subject>Mathematical models</subject><subject>Maximum temperature</subject><subject>Origins</subject><subject>Sidewall</subject><subject>Thermal flow</subject><subject>Touch</subject><subject>Transverse location</subject><subject>Tunnels (transportation)</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkctuFDEQRVsRSBkS_sHLbLpx9bt3oCgQUKRsYG1V7PKMR-1240eU-RM-N26GHZusXC7fOleuWxQ3wCvg0H86VuZ4IIwWQ4gel6DJVzWHruJQcd5fFDsYh6msYZzeFTvOYSinBvhl8SGE43blbb8r_ty9rOSNpSXizHDB-RRMYE6zeCBmFj0nWiRtDZQy2TRjJMXSmqfYwUU24ylXbvmrt_hibLJMkpnNsmd7DCySzVqMyRN7OjFk1imjTYY8Gx9Tdg0u-c3Cm71ZmHTZb43XxXuNc6CP_86r4tfXu5-39-XD47fvt18eStkMXSx7PSI0SslGT8MIqgUcGoWy7nreQNtSN_ChVVLrrn5qeT-pgbBHUv1EE7TQXBU3Z-7q3e9EIQprgqR5xoVcCgL6qW6aAcY2Sz-fpdK7EDxpsebNoT8J4GILRRzF_6GILRTBQeRQMuLHGUH5S88mvwZptgUr40lGoZx5O-wVWT6mhg</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Gao, Z.H.</creator><creator>Ji, J.</creator><creator>Fan, C.G.</creator><creator>Sun, J.H.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150501</creationdate><title>Experimental analysis of the influence of accumulated upper hot layer on the maximum ceiling gas temperature by a modified virtual source origin concept</title><author>Gao, Z.H. ; Ji, J. ; Fan, C.G. ; Sun, J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-6f8a13ddc3f9781d41a73dac25603144e57074dcff52b4069d7ea6aed69e91413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ceiling</topic><topic>Ceilings</topic><topic>Fires</topic><topic>Flushing</topic><topic>Gas temperature</topic><topic>Heat release rate</topic><topic>Mathematical models</topic><topic>Maximum temperature</topic><topic>Origins</topic><topic>Sidewall</topic><topic>Thermal flow</topic><topic>Touch</topic><topic>Transverse location</topic><topic>Tunnels (transportation)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Z.H.</creatorcontrib><creatorcontrib>Ji, J.</creatorcontrib><creatorcontrib>Fan, C.G.</creatorcontrib><creatorcontrib>Sun, J.H.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Z.H.</au><au>Ji, J.</au><au>Fan, C.G.</au><au>Sun, J.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental analysis of the influence of accumulated upper hot layer on the maximum ceiling gas temperature by a modified virtual source origin concept</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>84</volume><spage>262</spage><epage>270</epage><pages>262-270</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>This paper presents an experimental investigation to explore the influence of an accumulated hot upper layer on the maximum ceiling gas temperature of buoyancy-driven thermal flow in a reduced scale tunnel model. Experimental results show that the maximum excess temperature changes small with the decreasing of distance between fire source and the nearest sidewall until fire is flush with sidewall, then the maximum ceiling gas temperature increases significantly. A modified concept of virtual origin is introduced for calculating the maximum ceiling gas temperature in the presence of a hot upper layer beneath ceiling. On the basis of the experimental data and theoretical analysis, correlations of the virtual source location are proposed for fire placed out of touch and flush with sidewall, respectively. Further, the predicted maximum ceiling gas temperatures are compared with the measured ones for fire out of touch with sidewall as well as the data from other model-scale and full-scale tests. The results show that there is a good agreement when the modified dimensionless heat release rate, Q̇mod, which expresses the relative size of heat release rate compared to the tunnel geometry, is smaller than 0.09, otherwise the predicted maximum temperatures will be lower than the experimental values because of the impingement of intermittent flame on the tunnel ceiling.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2015.01.006</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2015-05, Vol.84, p.262-270
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_1692337184
source Elsevier ScienceDirect Journals Complete
subjects Ceiling
Ceilings
Fires
Flushing
Gas temperature
Heat release rate
Mathematical models
Maximum temperature
Origins
Sidewall
Thermal flow
Touch
Transverse location
Tunnels (transportation)
title Experimental analysis of the influence of accumulated upper hot layer on the maximum ceiling gas temperature by a modified virtual source origin concept
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A23%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20analysis%20of%20the%20influence%20of%20accumulated%20upper%20hot%20layer%20on%20the%20maximum%20ceiling%20gas%20temperature%20by%20a%20modified%20virtual%20source%20origin%20concept&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Gao,%20Z.H.&rft.date=2015-05-01&rft.volume=84&rft.spage=262&rft.epage=270&rft.pages=262-270&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2015.01.006&rft_dat=%3Cproquest_cross%3E1692337184%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692337184&rft_id=info:pmid/&rft_els_id=S0017931015000137&rfr_iscdi=true