Label-Free Cancer Cell Separation from Human Whole Blood Using Inertial Microfluidics at Low Shear Stress
We report a contraction–expansion array (CEA) microchannel device that performs label-free high-throughput separation of cancer cells from whole blood at low Reynolds number (Re). The CEA microfluidic device utilizes hydrodynamic field effect for cancer cell separation, two kinds of inertial effects...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2013-07, Vol.85 (13), p.6213-6218 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6218 |
---|---|
container_issue | 13 |
container_start_page | 6213 |
container_title | Analytical chemistry (Washington) |
container_volume | 85 |
creator | Lee, Myung Gwon Shin, Joong Ho Bae, Chae Yun Choi, Sungyoung Park, Je-Kyun |
description | We report a contraction–expansion array (CEA) microchannel device that performs label-free high-throughput separation of cancer cells from whole blood at low Reynolds number (Re). The CEA microfluidic device utilizes hydrodynamic field effect for cancer cell separation, two kinds of inertial effects: (1) inertial lift force and (2) Dean flow, which results in label-free size-based separation with high throughput. To avoid cell damages potentially caused by high shear stress in conventional inertial separation techniques, the CEA microfluidic device isolates the cells with low operational Re, maintaining high-throughput separation, using nondiluted whole blood samples (hematocrit ∼45%). We characterized inertial particle migration and investigated the migration of blood cells and various cancer cells (MCF-7, SK-BR-3, and HCC70) in the CEA microchannel. The separation of cancer cells from whole blood was demonstrated with a cancer cell recovery rate of 99.1%, a blood cell rejection ratio of 88.9%, and a throughput of 1.1 × 108 cells/min. In addition, the blood cell rejection ratio was further improved to 97.3% by a two-step filtration process with two devices connected in series. |
doi_str_mv | 10.1021/ac4006149 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692331444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1381098697</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-d8138d3bb681487b971eb38e77ddf84f9e55ee6336171233c1980d180144c88a3</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmALFdFt4dA_gCxVSOUQmLGd2D7Cql_SIg5LxTFykknrKokXO1HFv8fVlgrBgZMvj9_RzMvYCcIHBIEfXasAKlT2BVthKaCojBEHbAUAshAa4JAdpXQPgAhYvWKHQmqhbClXzG9cQ0NxEYn42k0tRb6mYeBb2rnoZh8m3scw8qtldBP_fhcG4p-HEDp-k_x0y68nirN3A__i2xj6YfGdbxN3M9-EB769Ixf5do6U0mv2sndDojdP7zG7uTj_tr4qNl8vr9efNoVTSsxFZ1CaTjZNZVAZ3ViN1EhDWnddb1RvqSyJKikr1CikbNEa6NAAKtUa4-QxO9vn7mL4sVCa69GnNu_kJgpLqrGy-VvW6v9UGgRrKqszPf2L3oclTnmRGvPxhRa2NFm936t8i5Qi9fUu-tHFnzVC_VhV_VxVtm-fEpdmpO5Z_u4mg3d74Nr0x7R_gn4BYbWWjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1400272958</pqid></control><display><type>article</type><title>Label-Free Cancer Cell Separation from Human Whole Blood Using Inertial Microfluidics at Low Shear Stress</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Lee, Myung Gwon ; Shin, Joong Ho ; Bae, Chae Yun ; Choi, Sungyoung ; Park, Je-Kyun</creator><creatorcontrib>Lee, Myung Gwon ; Shin, Joong Ho ; Bae, Chae Yun ; Choi, Sungyoung ; Park, Je-Kyun</creatorcontrib><description>We report a contraction–expansion array (CEA) microchannel device that performs label-free high-throughput separation of cancer cells from whole blood at low Reynolds number (Re). The CEA microfluidic device utilizes hydrodynamic field effect for cancer cell separation, two kinds of inertial effects: (1) inertial lift force and (2) Dean flow, which results in label-free size-based separation with high throughput. To avoid cell damages potentially caused by high shear stress in conventional inertial separation techniques, the CEA microfluidic device isolates the cells with low operational Re, maintaining high-throughput separation, using nondiluted whole blood samples (hematocrit ∼45%). We characterized inertial particle migration and investigated the migration of blood cells and various cancer cells (MCF-7, SK-BR-3, and HCC70) in the CEA microchannel. The separation of cancer cells from whole blood was demonstrated with a cancer cell recovery rate of 99.1%, a blood cell rejection ratio of 88.9%, and a throughput of 1.1 × 108 cells/min. In addition, the blood cell rejection ratio was further improved to 97.3% by a two-step filtration process with two devices connected in series.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac4006149</identifier><identifier>PMID: 23724953</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Blood ; Blood cells ; Blood Cells - chemistry ; Blood pressure ; Cancer ; Cell adhesion & migration ; Cell division ; Cell Line, Tumor ; Cell Movement - physiology ; Cell Separation - methods ; Devices ; Fluid mechanics ; Humans ; Inertial ; MCF-7 Cells ; Microfluidics ; Microfluidics - methods ; Neoplastic Cells, Circulating - chemistry ; Rejection ; Reynolds number ; Separation ; Shear Strength - physiology ; Stress, Mechanical</subject><ispartof>Analytical chemistry (Washington), 2013-07, Vol.85 (13), p.6213-6218</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>Copyright American Chemical Society Jul 2, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-d8138d3bb681487b971eb38e77ddf84f9e55ee6336171233c1980d180144c88a3</citedby><cites>FETCH-LOGICAL-a442t-d8138d3bb681487b971eb38e77ddf84f9e55ee6336171233c1980d180144c88a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac4006149$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac4006149$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23724953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Myung Gwon</creatorcontrib><creatorcontrib>Shin, Joong Ho</creatorcontrib><creatorcontrib>Bae, Chae Yun</creatorcontrib><creatorcontrib>Choi, Sungyoung</creatorcontrib><creatorcontrib>Park, Je-Kyun</creatorcontrib><title>Label-Free Cancer Cell Separation from Human Whole Blood Using Inertial Microfluidics at Low Shear Stress</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We report a contraction–expansion array (CEA) microchannel device that performs label-free high-throughput separation of cancer cells from whole blood at low Reynolds number (Re). The CEA microfluidic device utilizes hydrodynamic field effect for cancer cell separation, two kinds of inertial effects: (1) inertial lift force and (2) Dean flow, which results in label-free size-based separation with high throughput. To avoid cell damages potentially caused by high shear stress in conventional inertial separation techniques, the CEA microfluidic device isolates the cells with low operational Re, maintaining high-throughput separation, using nondiluted whole blood samples (hematocrit ∼45%). We characterized inertial particle migration and investigated the migration of blood cells and various cancer cells (MCF-7, SK-BR-3, and HCC70) in the CEA microchannel. The separation of cancer cells from whole blood was demonstrated with a cancer cell recovery rate of 99.1%, a blood cell rejection ratio of 88.9%, and a throughput of 1.1 × 108 cells/min. In addition, the blood cell rejection ratio was further improved to 97.3% by a two-step filtration process with two devices connected in series.</description><subject>Blood</subject><subject>Blood cells</subject><subject>Blood Cells - chemistry</subject><subject>Blood pressure</subject><subject>Cancer</subject><subject>Cell adhesion & migration</subject><subject>Cell division</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement - physiology</subject><subject>Cell Separation - methods</subject><subject>Devices</subject><subject>Fluid mechanics</subject><subject>Humans</subject><subject>Inertial</subject><subject>MCF-7 Cells</subject><subject>Microfluidics</subject><subject>Microfluidics - methods</subject><subject>Neoplastic Cells, Circulating - chemistry</subject><subject>Rejection</subject><subject>Reynolds number</subject><subject>Separation</subject><subject>Shear Strength - physiology</subject><subject>Stress, Mechanical</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1v1DAQBmALFdFt4dA_gCxVSOUQmLGd2D7Cql_SIg5LxTFykknrKokXO1HFv8fVlgrBgZMvj9_RzMvYCcIHBIEfXasAKlT2BVthKaCojBEHbAUAshAa4JAdpXQPgAhYvWKHQmqhbClXzG9cQ0NxEYn42k0tRb6mYeBb2rnoZh8m3scw8qtldBP_fhcG4p-HEDp-k_x0y68nirN3A__i2xj6YfGdbxN3M9-EB769Ixf5do6U0mv2sndDojdP7zG7uTj_tr4qNl8vr9efNoVTSsxFZ1CaTjZNZVAZ3ViN1EhDWnddb1RvqSyJKikr1CikbNEa6NAAKtUa4-QxO9vn7mL4sVCa69GnNu_kJgpLqrGy-VvW6v9UGgRrKqszPf2L3oclTnmRGvPxhRa2NFm936t8i5Qi9fUu-tHFnzVC_VhV_VxVtm-fEpdmpO5Z_u4mg3d74Nr0x7R_gn4BYbWWjA</recordid><startdate>20130702</startdate><enddate>20130702</enddate><creator>Lee, Myung Gwon</creator><creator>Shin, Joong Ho</creator><creator>Bae, Chae Yun</creator><creator>Choi, Sungyoung</creator><creator>Park, Je-Kyun</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20130702</creationdate><title>Label-Free Cancer Cell Separation from Human Whole Blood Using Inertial Microfluidics at Low Shear Stress</title><author>Lee, Myung Gwon ; Shin, Joong Ho ; Bae, Chae Yun ; Choi, Sungyoung ; Park, Je-Kyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-d8138d3bb681487b971eb38e77ddf84f9e55ee6336171233c1980d180144c88a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Blood</topic><topic>Blood cells</topic><topic>Blood Cells - chemistry</topic><topic>Blood pressure</topic><topic>Cancer</topic><topic>Cell adhesion & migration</topic><topic>Cell division</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement - physiology</topic><topic>Cell Separation - methods</topic><topic>Devices</topic><topic>Fluid mechanics</topic><topic>Humans</topic><topic>Inertial</topic><topic>MCF-7 Cells</topic><topic>Microfluidics</topic><topic>Microfluidics - methods</topic><topic>Neoplastic Cells, Circulating - chemistry</topic><topic>Rejection</topic><topic>Reynolds number</topic><topic>Separation</topic><topic>Shear Strength - physiology</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Myung Gwon</creatorcontrib><creatorcontrib>Shin, Joong Ho</creatorcontrib><creatorcontrib>Bae, Chae Yun</creatorcontrib><creatorcontrib>Choi, Sungyoung</creatorcontrib><creatorcontrib>Park, Je-Kyun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Myung Gwon</au><au>Shin, Joong Ho</au><au>Bae, Chae Yun</au><au>Choi, Sungyoung</au><au>Park, Je-Kyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Label-Free Cancer Cell Separation from Human Whole Blood Using Inertial Microfluidics at Low Shear Stress</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2013-07-02</date><risdate>2013</risdate><volume>85</volume><issue>13</issue><spage>6213</spage><epage>6218</epage><pages>6213-6218</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>We report a contraction–expansion array (CEA) microchannel device that performs label-free high-throughput separation of cancer cells from whole blood at low Reynolds number (Re). The CEA microfluidic device utilizes hydrodynamic field effect for cancer cell separation, two kinds of inertial effects: (1) inertial lift force and (2) Dean flow, which results in label-free size-based separation with high throughput. To avoid cell damages potentially caused by high shear stress in conventional inertial separation techniques, the CEA microfluidic device isolates the cells with low operational Re, maintaining high-throughput separation, using nondiluted whole blood samples (hematocrit ∼45%). We characterized inertial particle migration and investigated the migration of blood cells and various cancer cells (MCF-7, SK-BR-3, and HCC70) in the CEA microchannel. The separation of cancer cells from whole blood was demonstrated with a cancer cell recovery rate of 99.1%, a blood cell rejection ratio of 88.9%, and a throughput of 1.1 × 108 cells/min. In addition, the blood cell rejection ratio was further improved to 97.3% by a two-step filtration process with two devices connected in series.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23724953</pmid><doi>10.1021/ac4006149</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2013-07, Vol.85 (13), p.6213-6218 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692331444 |
source | MEDLINE; American Chemical Society Journals |
subjects | Blood Blood cells Blood Cells - chemistry Blood pressure Cancer Cell adhesion & migration Cell division Cell Line, Tumor Cell Movement - physiology Cell Separation - methods Devices Fluid mechanics Humans Inertial MCF-7 Cells Microfluidics Microfluidics - methods Neoplastic Cells, Circulating - chemistry Rejection Reynolds number Separation Shear Strength - physiology Stress, Mechanical |
title | Label-Free Cancer Cell Separation from Human Whole Blood Using Inertial Microfluidics at Low Shear Stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Label-Free%20Cancer%20Cell%20Separation%20from%20Human%20Whole%20Blood%20Using%20Inertial%20Microfluidics%20at%20Low%20Shear%20Stress&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Lee,%20Myung%20Gwon&rft.date=2013-07-02&rft.volume=85&rft.issue=13&rft.spage=6213&rft.epage=6218&rft.pages=6213-6218&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac4006149&rft_dat=%3Cproquest_cross%3E1381098697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1400272958&rft_id=info:pmid/23724953&rfr_iscdi=true |