Label-Free Cancer Cell Separation from Human Whole Blood Using Inertial Microfluidics at Low Shear Stress

We report a contraction–expansion array (CEA) microchannel device that performs label-free high-throughput separation of cancer cells from whole blood at low Reynolds number (Re). The CEA microfluidic device utilizes hydrodynamic field effect for cancer cell separation, two kinds of inertial effects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2013-07, Vol.85 (13), p.6213-6218
Hauptverfasser: Lee, Myung Gwon, Shin, Joong Ho, Bae, Chae Yun, Choi, Sungyoung, Park, Je-Kyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6218
container_issue 13
container_start_page 6213
container_title Analytical chemistry (Washington)
container_volume 85
creator Lee, Myung Gwon
Shin, Joong Ho
Bae, Chae Yun
Choi, Sungyoung
Park, Je-Kyun
description We report a contraction–expansion array (CEA) microchannel device that performs label-free high-throughput separation of cancer cells from whole blood at low Reynolds number (Re). The CEA microfluidic device utilizes hydrodynamic field effect for cancer cell separation, two kinds of inertial effects: (1) inertial lift force and (2) Dean flow, which results in label-free size-based separation with high throughput. To avoid cell damages potentially caused by high shear stress in conventional inertial separation techniques, the CEA microfluidic device isolates the cells with low operational Re, maintaining high-throughput separation, using nondiluted whole blood samples (hematocrit ∼45%). We characterized inertial particle migration and investigated the migration of blood cells and various cancer cells (MCF-7, SK-BR-3, and HCC70) in the CEA microchannel. The separation of cancer cells from whole blood was demonstrated with a cancer cell recovery rate of 99.1%, a blood cell rejection ratio of 88.9%, and a throughput of 1.1 × 108 cells/min. In addition, the blood cell rejection ratio was further improved to 97.3% by a two-step filtration process with two devices connected in series.
doi_str_mv 10.1021/ac4006149
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692331444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1381098697</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-d8138d3bb681487b971eb38e77ddf84f9e55ee6336171233c1980d180144c88a3</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmALFdFt4dA_gCxVSOUQmLGd2D7Cql_SIg5LxTFykknrKokXO1HFv8fVlgrBgZMvj9_RzMvYCcIHBIEfXasAKlT2BVthKaCojBEHbAUAshAa4JAdpXQPgAhYvWKHQmqhbClXzG9cQ0NxEYn42k0tRb6mYeBb2rnoZh8m3scw8qtldBP_fhcG4p-HEDp-k_x0y68nirN3A__i2xj6YfGdbxN3M9-EB769Ixf5do6U0mv2sndDojdP7zG7uTj_tr4qNl8vr9efNoVTSsxFZ1CaTjZNZVAZ3ViN1EhDWnddb1RvqSyJKikr1CikbNEa6NAAKtUa4-QxO9vn7mL4sVCa69GnNu_kJgpLqrGy-VvW6v9UGgRrKqszPf2L3oclTnmRGvPxhRa2NFm936t8i5Qi9fUu-tHFnzVC_VhV_VxVtm-fEpdmpO5Z_u4mg3d74Nr0x7R_gn4BYbWWjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1400272958</pqid></control><display><type>article</type><title>Label-Free Cancer Cell Separation from Human Whole Blood Using Inertial Microfluidics at Low Shear Stress</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Lee, Myung Gwon ; Shin, Joong Ho ; Bae, Chae Yun ; Choi, Sungyoung ; Park, Je-Kyun</creator><creatorcontrib>Lee, Myung Gwon ; Shin, Joong Ho ; Bae, Chae Yun ; Choi, Sungyoung ; Park, Je-Kyun</creatorcontrib><description>We report a contraction–expansion array (CEA) microchannel device that performs label-free high-throughput separation of cancer cells from whole blood at low Reynolds number (Re). The CEA microfluidic device utilizes hydrodynamic field effect for cancer cell separation, two kinds of inertial effects: (1) inertial lift force and (2) Dean flow, which results in label-free size-based separation with high throughput. To avoid cell damages potentially caused by high shear stress in conventional inertial separation techniques, the CEA microfluidic device isolates the cells with low operational Re, maintaining high-throughput separation, using nondiluted whole blood samples (hematocrit ∼45%). We characterized inertial particle migration and investigated the migration of blood cells and various cancer cells (MCF-7, SK-BR-3, and HCC70) in the CEA microchannel. The separation of cancer cells from whole blood was demonstrated with a cancer cell recovery rate of 99.1%, a blood cell rejection ratio of 88.9%, and a throughput of 1.1 × 108 cells/min. In addition, the blood cell rejection ratio was further improved to 97.3% by a two-step filtration process with two devices connected in series.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac4006149</identifier><identifier>PMID: 23724953</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Blood ; Blood cells ; Blood Cells - chemistry ; Blood pressure ; Cancer ; Cell adhesion &amp; migration ; Cell division ; Cell Line, Tumor ; Cell Movement - physiology ; Cell Separation - methods ; Devices ; Fluid mechanics ; Humans ; Inertial ; MCF-7 Cells ; Microfluidics ; Microfluidics - methods ; Neoplastic Cells, Circulating - chemistry ; Rejection ; Reynolds number ; Separation ; Shear Strength - physiology ; Stress, Mechanical</subject><ispartof>Analytical chemistry (Washington), 2013-07, Vol.85 (13), p.6213-6218</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>Copyright American Chemical Society Jul 2, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-d8138d3bb681487b971eb38e77ddf84f9e55ee6336171233c1980d180144c88a3</citedby><cites>FETCH-LOGICAL-a442t-d8138d3bb681487b971eb38e77ddf84f9e55ee6336171233c1980d180144c88a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac4006149$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac4006149$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23724953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Myung Gwon</creatorcontrib><creatorcontrib>Shin, Joong Ho</creatorcontrib><creatorcontrib>Bae, Chae Yun</creatorcontrib><creatorcontrib>Choi, Sungyoung</creatorcontrib><creatorcontrib>Park, Je-Kyun</creatorcontrib><title>Label-Free Cancer Cell Separation from Human Whole Blood Using Inertial Microfluidics at Low Shear Stress</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We report a contraction–expansion array (CEA) microchannel device that performs label-free high-throughput separation of cancer cells from whole blood at low Reynolds number (Re). The CEA microfluidic device utilizes hydrodynamic field effect for cancer cell separation, two kinds of inertial effects: (1) inertial lift force and (2) Dean flow, which results in label-free size-based separation with high throughput. To avoid cell damages potentially caused by high shear stress in conventional inertial separation techniques, the CEA microfluidic device isolates the cells with low operational Re, maintaining high-throughput separation, using nondiluted whole blood samples (hematocrit ∼45%). We characterized inertial particle migration and investigated the migration of blood cells and various cancer cells (MCF-7, SK-BR-3, and HCC70) in the CEA microchannel. The separation of cancer cells from whole blood was demonstrated with a cancer cell recovery rate of 99.1%, a blood cell rejection ratio of 88.9%, and a throughput of 1.1 × 108 cells/min. In addition, the blood cell rejection ratio was further improved to 97.3% by a two-step filtration process with two devices connected in series.</description><subject>Blood</subject><subject>Blood cells</subject><subject>Blood Cells - chemistry</subject><subject>Blood pressure</subject><subject>Cancer</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell division</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement - physiology</subject><subject>Cell Separation - methods</subject><subject>Devices</subject><subject>Fluid mechanics</subject><subject>Humans</subject><subject>Inertial</subject><subject>MCF-7 Cells</subject><subject>Microfluidics</subject><subject>Microfluidics - methods</subject><subject>Neoplastic Cells, Circulating - chemistry</subject><subject>Rejection</subject><subject>Reynolds number</subject><subject>Separation</subject><subject>Shear Strength - physiology</subject><subject>Stress, Mechanical</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1v1DAQBmALFdFt4dA_gCxVSOUQmLGd2D7Cql_SIg5LxTFykknrKokXO1HFv8fVlgrBgZMvj9_RzMvYCcIHBIEfXasAKlT2BVthKaCojBEHbAUAshAa4JAdpXQPgAhYvWKHQmqhbClXzG9cQ0NxEYn42k0tRb6mYeBb2rnoZh8m3scw8qtldBP_fhcG4p-HEDp-k_x0y68nirN3A__i2xj6YfGdbxN3M9-EB769Ixf5do6U0mv2sndDojdP7zG7uTj_tr4qNl8vr9efNoVTSsxFZ1CaTjZNZVAZ3ViN1EhDWnddb1RvqSyJKikr1CikbNEa6NAAKtUa4-QxO9vn7mL4sVCa69GnNu_kJgpLqrGy-VvW6v9UGgRrKqszPf2L3oclTnmRGvPxhRa2NFm936t8i5Qi9fUu-tHFnzVC_VhV_VxVtm-fEpdmpO5Z_u4mg3d74Nr0x7R_gn4BYbWWjA</recordid><startdate>20130702</startdate><enddate>20130702</enddate><creator>Lee, Myung Gwon</creator><creator>Shin, Joong Ho</creator><creator>Bae, Chae Yun</creator><creator>Choi, Sungyoung</creator><creator>Park, Je-Kyun</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20130702</creationdate><title>Label-Free Cancer Cell Separation from Human Whole Blood Using Inertial Microfluidics at Low Shear Stress</title><author>Lee, Myung Gwon ; Shin, Joong Ho ; Bae, Chae Yun ; Choi, Sungyoung ; Park, Je-Kyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-d8138d3bb681487b971eb38e77ddf84f9e55ee6336171233c1980d180144c88a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Blood</topic><topic>Blood cells</topic><topic>Blood Cells - chemistry</topic><topic>Blood pressure</topic><topic>Cancer</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell division</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement - physiology</topic><topic>Cell Separation - methods</topic><topic>Devices</topic><topic>Fluid mechanics</topic><topic>Humans</topic><topic>Inertial</topic><topic>MCF-7 Cells</topic><topic>Microfluidics</topic><topic>Microfluidics - methods</topic><topic>Neoplastic Cells, Circulating - chemistry</topic><topic>Rejection</topic><topic>Reynolds number</topic><topic>Separation</topic><topic>Shear Strength - physiology</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Myung Gwon</creatorcontrib><creatorcontrib>Shin, Joong Ho</creatorcontrib><creatorcontrib>Bae, Chae Yun</creatorcontrib><creatorcontrib>Choi, Sungyoung</creatorcontrib><creatorcontrib>Park, Je-Kyun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Myung Gwon</au><au>Shin, Joong Ho</au><au>Bae, Chae Yun</au><au>Choi, Sungyoung</au><au>Park, Je-Kyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Label-Free Cancer Cell Separation from Human Whole Blood Using Inertial Microfluidics at Low Shear Stress</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2013-07-02</date><risdate>2013</risdate><volume>85</volume><issue>13</issue><spage>6213</spage><epage>6218</epage><pages>6213-6218</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>We report a contraction–expansion array (CEA) microchannel device that performs label-free high-throughput separation of cancer cells from whole blood at low Reynolds number (Re). The CEA microfluidic device utilizes hydrodynamic field effect for cancer cell separation, two kinds of inertial effects: (1) inertial lift force and (2) Dean flow, which results in label-free size-based separation with high throughput. To avoid cell damages potentially caused by high shear stress in conventional inertial separation techniques, the CEA microfluidic device isolates the cells with low operational Re, maintaining high-throughput separation, using nondiluted whole blood samples (hematocrit ∼45%). We characterized inertial particle migration and investigated the migration of blood cells and various cancer cells (MCF-7, SK-BR-3, and HCC70) in the CEA microchannel. The separation of cancer cells from whole blood was demonstrated with a cancer cell recovery rate of 99.1%, a blood cell rejection ratio of 88.9%, and a throughput of 1.1 × 108 cells/min. In addition, the blood cell rejection ratio was further improved to 97.3% by a two-step filtration process with two devices connected in series.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23724953</pmid><doi>10.1021/ac4006149</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2013-07, Vol.85 (13), p.6213-6218
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1692331444
source MEDLINE; American Chemical Society Journals
subjects Blood
Blood cells
Blood Cells - chemistry
Blood pressure
Cancer
Cell adhesion & migration
Cell division
Cell Line, Tumor
Cell Movement - physiology
Cell Separation - methods
Devices
Fluid mechanics
Humans
Inertial
MCF-7 Cells
Microfluidics
Microfluidics - methods
Neoplastic Cells, Circulating - chemistry
Rejection
Reynolds number
Separation
Shear Strength - physiology
Stress, Mechanical
title Label-Free Cancer Cell Separation from Human Whole Blood Using Inertial Microfluidics at Low Shear Stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Label-Free%20Cancer%20Cell%20Separation%20from%20Human%20Whole%20Blood%20Using%20Inertial%20Microfluidics%20at%20Low%20Shear%20Stress&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Lee,%20Myung%20Gwon&rft.date=2013-07-02&rft.volume=85&rft.issue=13&rft.spage=6213&rft.epage=6218&rft.pages=6213-6218&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac4006149&rft_dat=%3Cproquest_cross%3E1381098697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1400272958&rft_id=info:pmid/23724953&rfr_iscdi=true