Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices
The nanoscale manipulation of matter allows properties to be created in a material that would be difficult or even impossible to achieve in the bulk state. Progress towards such functional nanoscale architectures requires the development of methods to precisely locate nanoscale objects in three dime...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2015-05, Vol.10 (5), p.453-458 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 458 |
---|---|
container_issue | 5 |
container_start_page | 453 |
container_title | Nature nanotechnology |
container_volume | 10 |
creator | Ross, Michael B. Ku, Jessie C. Vaccarezza, Victoria M. Schatz, George C. Mirkin, Chad A. |
description | The nanoscale manipulation of matter allows properties to be created in a material that would be difficult or even impossible to achieve in the bulk state. Progress towards such functional nanoscale architectures requires the development of methods to precisely locate nanoscale objects in three dimensions and for the formation of rigorous structure–function relationships across multiple size regimes (beginning from the nanoscale). Here, we use DNA as a programmable ligand to show that two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up. The superlattices can transition from exhibiting the properties of the constituent plasmonic nanoparticles to adopting the photonic properties defined by the mesoscale crystal (here a rhombic dodecahedron) by controlling the spacing between the gold nanoparticle building blocks. Furthermore, we develop a generally applicable theoretical framework that illustrates how crystal habit can be a design consideration for controlling far-field extinction and light confinement in plasmonic metamaterial superlattices.
Two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up by using DNA as a programmable ligand. |
doi_str_mv | 10.1038/nnano.2015.68 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692325296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3676839371</sourcerecordid><originalsourceid>FETCH-LOGICAL-p274t-ff30ac3361a3d33dd7fb1379778d9bac9b6898b4de1878398685982c8dcbc9773</originalsourceid><addsrcrecordid>eNqN0btOwzAUBmALgWi5jKwoEgtLQnyJfTxW5SpVZQGJLXIcB6VKnBAnAxvvwBvyJDi0RYipk2-fj330I3SG4wjHFK6sVbaJSIyTiMMemmLBIKRUJvu_cxATdOTcKo4TIgk7RBOSABeSkSl6WfrrTqvKBEXT1UFe6l71xgW1cdv9weq-bGxQ2qCtlKsbW-rgejn7-vgcH29V15faQze0pqtU71fGnaCDQlXOnG7GY_R8e_M0vw8Xj3cP89kibIlgfVgUNFaaUo4VzSnNc1FkmAopBOQyU1pmHCRkLDcYBFAJHBIJREOuM-0VPUaX67pt17wNxvVpXTptqkpZ0wwuxVwSSnzjfAcKggvGErYLjbEkCRs_cPGPrpqhs75nr4TEQJkEr843ashqk6dtV9aqe0-3SXgQrYHzR_bVdH_KxOkYdfoTdTpGnXKg3xSsms4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1679183498</pqid></control><display><type>article</type><title>Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Ross, Michael B. ; Ku, Jessie C. ; Vaccarezza, Victoria M. ; Schatz, George C. ; Mirkin, Chad A.</creator><creatorcontrib>Ross, Michael B. ; Ku, Jessie C. ; Vaccarezza, Victoria M. ; Schatz, George C. ; Mirkin, Chad A.</creatorcontrib><description>The nanoscale manipulation of matter allows properties to be created in a material that would be difficult or even impossible to achieve in the bulk state. Progress towards such functional nanoscale architectures requires the development of methods to precisely locate nanoscale objects in three dimensions and for the formation of rigorous structure–function relationships across multiple size regimes (beginning from the nanoscale). Here, we use DNA as a programmable ligand to show that two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up. The superlattices can transition from exhibiting the properties of the constituent plasmonic nanoparticles to adopting the photonic properties defined by the mesoscale crystal (here a rhombic dodecahedron) by controlling the spacing between the gold nanoparticle building blocks. Furthermore, we develop a generally applicable theoretical framework that illustrates how crystal habit can be a design consideration for controlling far-field extinction and light confinement in plasmonic metamaterial superlattices.
Two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up by using DNA as a programmable ligand.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2015.68</identifier><identifier>PMID: 25867942</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 147/143 ; 639/624/399/354 ; 639/925/357/537 ; 639/925/926/1050 ; Crystals ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; Gold - chemistry ; Materials Science ; Mesoscale phenomena ; Metal Nanoparticles - chemistry ; Metamaterials ; Nanoparticles ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology ; Nanotechnology and Microengineering ; Optical properties ; Optics and Photonics ; Plasmonics ; Superlattices ; Three dimensional</subject><ispartof>Nature nanotechnology, 2015-05, Vol.10 (5), p.453-458</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group May 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p274t-ff30ac3361a3d33dd7fb1379778d9bac9b6898b4de1878398685982c8dcbc9773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2015.68$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2015.68$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25867942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ross, Michael B.</creatorcontrib><creatorcontrib>Ku, Jessie C.</creatorcontrib><creatorcontrib>Vaccarezza, Victoria M.</creatorcontrib><creatorcontrib>Schatz, George C.</creatorcontrib><creatorcontrib>Mirkin, Chad A.</creatorcontrib><title>Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>The nanoscale manipulation of matter allows properties to be created in a material that would be difficult or even impossible to achieve in the bulk state. Progress towards such functional nanoscale architectures requires the development of methods to precisely locate nanoscale objects in three dimensions and for the formation of rigorous structure–function relationships across multiple size regimes (beginning from the nanoscale). Here, we use DNA as a programmable ligand to show that two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up. The superlattices can transition from exhibiting the properties of the constituent plasmonic nanoparticles to adopting the photonic properties defined by the mesoscale crystal (here a rhombic dodecahedron) by controlling the spacing between the gold nanoparticle building blocks. Furthermore, we develop a generally applicable theoretical framework that illustrates how crystal habit can be a design consideration for controlling far-field extinction and light confinement in plasmonic metamaterial superlattices.
Two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up by using DNA as a programmable ligand.</description><subject>119/118</subject><subject>147/143</subject><subject>639/624/399/354</subject><subject>639/925/357/537</subject><subject>639/925/926/1050</subject><subject>Crystals</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Gold - chemistry</subject><subject>Materials Science</subject><subject>Mesoscale phenomena</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metamaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optical properties</subject><subject>Optics and Photonics</subject><subject>Plasmonics</subject><subject>Superlattices</subject><subject>Three dimensional</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqN0btOwzAUBmALgWi5jKwoEgtLQnyJfTxW5SpVZQGJLXIcB6VKnBAnAxvvwBvyJDi0RYipk2-fj330I3SG4wjHFK6sVbaJSIyTiMMemmLBIKRUJvu_cxATdOTcKo4TIgk7RBOSABeSkSl6WfrrTqvKBEXT1UFe6l71xgW1cdv9weq-bGxQ2qCtlKsbW-rgejn7-vgcH29V15faQze0pqtU71fGnaCDQlXOnG7GY_R8e_M0vw8Xj3cP89kibIlgfVgUNFaaUo4VzSnNc1FkmAopBOQyU1pmHCRkLDcYBFAJHBIJREOuM-0VPUaX67pt17wNxvVpXTptqkpZ0wwuxVwSSnzjfAcKggvGErYLjbEkCRs_cPGPrpqhs75nr4TEQJkEr843ashqk6dtV9aqe0-3SXgQrYHzR_bVdH_KxOkYdfoTdTpGnXKg3xSsms4</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Ross, Michael B.</creator><creator>Ku, Jessie C.</creator><creator>Vaccarezza, Victoria M.</creator><creator>Schatz, George C.</creator><creator>Mirkin, Chad A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7TM</scope></search><sort><creationdate>20150501</creationdate><title>Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices</title><author>Ross, Michael B. ; Ku, Jessie C. ; Vaccarezza, Victoria M. ; Schatz, George C. ; Mirkin, Chad A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p274t-ff30ac3361a3d33dd7fb1379778d9bac9b6898b4de1878398685982c8dcbc9773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>119/118</topic><topic>147/143</topic><topic>639/624/399/354</topic><topic>639/925/357/537</topic><topic>639/925/926/1050</topic><topic>Crystals</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Gold - chemistry</topic><topic>Materials Science</topic><topic>Mesoscale phenomena</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metamaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optical properties</topic><topic>Optics and Photonics</topic><topic>Plasmonics</topic><topic>Superlattices</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross, Michael B.</creatorcontrib><creatorcontrib>Ku, Jessie C.</creatorcontrib><creatorcontrib>Vaccarezza, Victoria M.</creatorcontrib><creatorcontrib>Schatz, George C.</creatorcontrib><creatorcontrib>Mirkin, Chad A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ross, Michael B.</au><au>Ku, Jessie C.</au><au>Vaccarezza, Victoria M.</au><au>Schatz, George C.</au><au>Mirkin, Chad A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>10</volume><issue>5</issue><spage>453</spage><epage>458</epage><pages>453-458</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>The nanoscale manipulation of matter allows properties to be created in a material that would be difficult or even impossible to achieve in the bulk state. Progress towards such functional nanoscale architectures requires the development of methods to precisely locate nanoscale objects in three dimensions and for the formation of rigorous structure–function relationships across multiple size regimes (beginning from the nanoscale). Here, we use DNA as a programmable ligand to show that two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up. The superlattices can transition from exhibiting the properties of the constituent plasmonic nanoparticles to adopting the photonic properties defined by the mesoscale crystal (here a rhombic dodecahedron) by controlling the spacing between the gold nanoparticle building blocks. Furthermore, we develop a generally applicable theoretical framework that illustrates how crystal habit can be a design consideration for controlling far-field extinction and light confinement in plasmonic metamaterial superlattices.
Two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up by using DNA as a programmable ligand.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25867942</pmid><doi>10.1038/nnano.2015.68</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2015-05, Vol.10 (5), p.453-458 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_miscellaneous_1692325296 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 119/118 147/143 639/624/399/354 639/925/357/537 639/925/926/1050 Crystals Deoxyribonucleic acid DNA DNA - chemistry Gold - chemistry Materials Science Mesoscale phenomena Metal Nanoparticles - chemistry Metamaterials Nanoparticles Nanostructure Nanostructures - chemistry Nanostructures - ultrastructure Nanotechnology Nanotechnology and Microengineering Optical properties Optics and Photonics Plasmonics Superlattices Three dimensional |
title | Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A57%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20form%20dictates%20mesoscale%20function%20in%20plasmonic%20DNA%E2%80%93nanoparticle%20superlattices&rft.jtitle=Nature%20nanotechnology&rft.au=Ross,%20Michael%20B.&rft.date=2015-05-01&rft.volume=10&rft.issue=5&rft.spage=453&rft.epage=458&rft.pages=453-458&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2015.68&rft_dat=%3Cproquest_pubme%3E3676839371%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1679183498&rft_id=info:pmid/25867942&rfr_iscdi=true |