Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices

The nanoscale manipulation of matter allows properties to be created in a material that would be difficult or even impossible to achieve in the bulk state. Progress towards such functional nanoscale architectures requires the development of methods to precisely locate nanoscale objects in three dime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2015-05, Vol.10 (5), p.453-458
Hauptverfasser: Ross, Michael B., Ku, Jessie C., Vaccarezza, Victoria M., Schatz, George C., Mirkin, Chad A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 458
container_issue 5
container_start_page 453
container_title Nature nanotechnology
container_volume 10
creator Ross, Michael B.
Ku, Jessie C.
Vaccarezza, Victoria M.
Schatz, George C.
Mirkin, Chad A.
description The nanoscale manipulation of matter allows properties to be created in a material that would be difficult or even impossible to achieve in the bulk state. Progress towards such functional nanoscale architectures requires the development of methods to precisely locate nanoscale objects in three dimensions and for the formation of rigorous structure–function relationships across multiple size regimes (beginning from the nanoscale). Here, we use DNA as a programmable ligand to show that two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up. The superlattices can transition from exhibiting the properties of the constituent plasmonic nanoparticles to adopting the photonic properties defined by the mesoscale crystal (here a rhombic dodecahedron) by controlling the spacing between the gold nanoparticle building blocks. Furthermore, we develop a generally applicable theoretical framework that illustrates how crystal habit can be a design consideration for controlling far-field extinction and light confinement in plasmonic metamaterial superlattices. Two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up by using DNA as a programmable ligand.
doi_str_mv 10.1038/nnano.2015.68
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1692325296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3676839371</sourcerecordid><originalsourceid>FETCH-LOGICAL-p274t-ff30ac3361a3d33dd7fb1379778d9bac9b6898b4de1878398685982c8dcbc9773</originalsourceid><addsrcrecordid>eNqN0btOwzAUBmALgWi5jKwoEgtLQnyJfTxW5SpVZQGJLXIcB6VKnBAnAxvvwBvyJDi0RYipk2-fj330I3SG4wjHFK6sVbaJSIyTiMMemmLBIKRUJvu_cxATdOTcKo4TIgk7RBOSABeSkSl6WfrrTqvKBEXT1UFe6l71xgW1cdv9weq-bGxQ2qCtlKsbW-rgejn7-vgcH29V15faQze0pqtU71fGnaCDQlXOnG7GY_R8e_M0vw8Xj3cP89kibIlgfVgUNFaaUo4VzSnNc1FkmAopBOQyU1pmHCRkLDcYBFAJHBIJREOuM-0VPUaX67pt17wNxvVpXTptqkpZ0wwuxVwSSnzjfAcKggvGErYLjbEkCRs_cPGPrpqhs75nr4TEQJkEr843ashqk6dtV9aqe0-3SXgQrYHzR_bVdH_KxOkYdfoTdTpGnXKg3xSsms4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1679183498</pqid></control><display><type>article</type><title>Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Ross, Michael B. ; Ku, Jessie C. ; Vaccarezza, Victoria M. ; Schatz, George C. ; Mirkin, Chad A.</creator><creatorcontrib>Ross, Michael B. ; Ku, Jessie C. ; Vaccarezza, Victoria M. ; Schatz, George C. ; Mirkin, Chad A.</creatorcontrib><description>The nanoscale manipulation of matter allows properties to be created in a material that would be difficult or even impossible to achieve in the bulk state. Progress towards such functional nanoscale architectures requires the development of methods to precisely locate nanoscale objects in three dimensions and for the formation of rigorous structure–function relationships across multiple size regimes (beginning from the nanoscale). Here, we use DNA as a programmable ligand to show that two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up. The superlattices can transition from exhibiting the properties of the constituent plasmonic nanoparticles to adopting the photonic properties defined by the mesoscale crystal (here a rhombic dodecahedron) by controlling the spacing between the gold nanoparticle building blocks. Furthermore, we develop a generally applicable theoretical framework that illustrates how crystal habit can be a design consideration for controlling far-field extinction and light confinement in plasmonic metamaterial superlattices. Two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up by using DNA as a programmable ligand.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2015.68</identifier><identifier>PMID: 25867942</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 147/143 ; 639/624/399/354 ; 639/925/357/537 ; 639/925/926/1050 ; Crystals ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; Gold - chemistry ; Materials Science ; Mesoscale phenomena ; Metal Nanoparticles - chemistry ; Metamaterials ; Nanoparticles ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology ; Nanotechnology and Microengineering ; Optical properties ; Optics and Photonics ; Plasmonics ; Superlattices ; Three dimensional</subject><ispartof>Nature nanotechnology, 2015-05, Vol.10 (5), p.453-458</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group May 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p274t-ff30ac3361a3d33dd7fb1379778d9bac9b6898b4de1878398685982c8dcbc9773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2015.68$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2015.68$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25867942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ross, Michael B.</creatorcontrib><creatorcontrib>Ku, Jessie C.</creatorcontrib><creatorcontrib>Vaccarezza, Victoria M.</creatorcontrib><creatorcontrib>Schatz, George C.</creatorcontrib><creatorcontrib>Mirkin, Chad A.</creatorcontrib><title>Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>The nanoscale manipulation of matter allows properties to be created in a material that would be difficult or even impossible to achieve in the bulk state. Progress towards such functional nanoscale architectures requires the development of methods to precisely locate nanoscale objects in three dimensions and for the formation of rigorous structure–function relationships across multiple size regimes (beginning from the nanoscale). Here, we use DNA as a programmable ligand to show that two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up. The superlattices can transition from exhibiting the properties of the constituent plasmonic nanoparticles to adopting the photonic properties defined by the mesoscale crystal (here a rhombic dodecahedron) by controlling the spacing between the gold nanoparticle building blocks. Furthermore, we develop a generally applicable theoretical framework that illustrates how crystal habit can be a design consideration for controlling far-field extinction and light confinement in plasmonic metamaterial superlattices. Two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up by using DNA as a programmable ligand.</description><subject>119/118</subject><subject>147/143</subject><subject>639/624/399/354</subject><subject>639/925/357/537</subject><subject>639/925/926/1050</subject><subject>Crystals</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Gold - chemistry</subject><subject>Materials Science</subject><subject>Mesoscale phenomena</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metamaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optical properties</subject><subject>Optics and Photonics</subject><subject>Plasmonics</subject><subject>Superlattices</subject><subject>Three dimensional</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqN0btOwzAUBmALgWi5jKwoEgtLQnyJfTxW5SpVZQGJLXIcB6VKnBAnAxvvwBvyJDi0RYipk2-fj330I3SG4wjHFK6sVbaJSIyTiMMemmLBIKRUJvu_cxATdOTcKo4TIgk7RBOSABeSkSl6WfrrTqvKBEXT1UFe6l71xgW1cdv9weq-bGxQ2qCtlKsbW-rgejn7-vgcH29V15faQze0pqtU71fGnaCDQlXOnG7GY_R8e_M0vw8Xj3cP89kibIlgfVgUNFaaUo4VzSnNc1FkmAopBOQyU1pmHCRkLDcYBFAJHBIJREOuM-0VPUaX67pt17wNxvVpXTptqkpZ0wwuxVwSSnzjfAcKggvGErYLjbEkCRs_cPGPrpqhs75nr4TEQJkEr843ashqk6dtV9aqe0-3SXgQrYHzR_bVdH_KxOkYdfoTdTpGnXKg3xSsms4</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Ross, Michael B.</creator><creator>Ku, Jessie C.</creator><creator>Vaccarezza, Victoria M.</creator><creator>Schatz, George C.</creator><creator>Mirkin, Chad A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7TM</scope></search><sort><creationdate>20150501</creationdate><title>Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices</title><author>Ross, Michael B. ; Ku, Jessie C. ; Vaccarezza, Victoria M. ; Schatz, George C. ; Mirkin, Chad A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p274t-ff30ac3361a3d33dd7fb1379778d9bac9b6898b4de1878398685982c8dcbc9773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>119/118</topic><topic>147/143</topic><topic>639/624/399/354</topic><topic>639/925/357/537</topic><topic>639/925/926/1050</topic><topic>Crystals</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Gold - chemistry</topic><topic>Materials Science</topic><topic>Mesoscale phenomena</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metamaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optical properties</topic><topic>Optics and Photonics</topic><topic>Plasmonics</topic><topic>Superlattices</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross, Michael B.</creatorcontrib><creatorcontrib>Ku, Jessie C.</creatorcontrib><creatorcontrib>Vaccarezza, Victoria M.</creatorcontrib><creatorcontrib>Schatz, George C.</creatorcontrib><creatorcontrib>Mirkin, Chad A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ross, Michael B.</au><au>Ku, Jessie C.</au><au>Vaccarezza, Victoria M.</au><au>Schatz, George C.</au><au>Mirkin, Chad A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>10</volume><issue>5</issue><spage>453</spage><epage>458</epage><pages>453-458</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>The nanoscale manipulation of matter allows properties to be created in a material that would be difficult or even impossible to achieve in the bulk state. Progress towards such functional nanoscale architectures requires the development of methods to precisely locate nanoscale objects in three dimensions and for the formation of rigorous structure–function relationships across multiple size regimes (beginning from the nanoscale). Here, we use DNA as a programmable ligand to show that two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up. The superlattices can transition from exhibiting the properties of the constituent plasmonic nanoparticles to adopting the photonic properties defined by the mesoscale crystal (here a rhombic dodecahedron) by controlling the spacing between the gold nanoparticle building blocks. Furthermore, we develop a generally applicable theoretical framework that illustrates how crystal habit can be a design consideration for controlling far-field extinction and light confinement in plasmonic metamaterial superlattices. Two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up by using DNA as a programmable ligand.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25867942</pmid><doi>10.1038/nnano.2015.68</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2015-05, Vol.10 (5), p.453-458
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_1692325296
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 119/118
147/143
639/624/399/354
639/925/357/537
639/925/926/1050
Crystals
Deoxyribonucleic acid
DNA
DNA - chemistry
Gold - chemistry
Materials Science
Mesoscale phenomena
Metal Nanoparticles - chemistry
Metamaterials
Nanoparticles
Nanostructure
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology
Nanotechnology and Microengineering
Optical properties
Optics and Photonics
Plasmonics
Superlattices
Three dimensional
title Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A57%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20form%20dictates%20mesoscale%20function%20in%20plasmonic%20DNA%E2%80%93nanoparticle%20superlattices&rft.jtitle=Nature%20nanotechnology&rft.au=Ross,%20Michael%20B.&rft.date=2015-05-01&rft.volume=10&rft.issue=5&rft.spage=453&rft.epage=458&rft.pages=453-458&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2015.68&rft_dat=%3Cproquest_pubme%3E3676839371%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1679183498&rft_id=info:pmid/25867942&rfr_iscdi=true